Background: Elevated levels of interleukin-6 (IL-6) have been identified in a variety of systemic inflammatory states that are associated with endothelial barrier dysfunction, but the specific effect of IL-6 on endothelial permeability and the mechanism of action have not been fully examined. The current study evaluated the effect of IL-6 on endothelial permeability and on the distribution of the tight junctional protein ZO-1 and cytoskeletal actin. We also assessed the role of protein kinase C (PKC) in this process.
Methods: Confluent monolayers of human umbilical vein endothelial cells (n = 6) were exposed to IL-6 (50-500 ng/ml) in the presence or absence of the PKC inhibitor Gö6976 (0.1 microM). Transendothelial electrical resistance (TEER) was measured at the onset of exposure and at 6-h intervals and compared with that of control cells using ANOVA with a Bonferroni multiple comparison test. Additional monolayers were exposed to IL-6, stained for ZO-1 and F-actin, and evaluated via fluorescence microscopy.
Results: Interleukin-6 increased endothelial permeability as measured by TEER in a dose- and time-dependent manner. In the presence of PKC inhibitor, the IL-6-mediated increase in permeability was attenuated (18-h TEER 73% of control with IL-6 exposure vs 95% of control with IL-6 + Gö6976 inhibitor, P < 0.01). Microscopy revealed that permeability changes were accompanied by a redistribution of the tight junctional protein ZO-1 and cytoskeletal actin, increased cell contraction, and disorganization of the intercellular borders. Conclusions. The inflammatory cytokine IL-6 is an important mediator of increased endothelial permeability via alterations in the ultrastructural distribution of tight junctions and morphologic changes in cell shape. PKC is a critical intracellular messenger in these IL-6-mediated changes. A better understanding of this mechanism should allow the determination of rational treatment strategies for endothelial barrier dysfunction which occurs in inflammatory states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jsre.2002.6415 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFCytotherapy
January 2025
Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India.
Background Aims: The clinical translation of mesenchymal stromal cell secretome (MSC-S) has been challenging owing to a lack of appropriate methods in downstream processing. Dialysis is an age-old method of protein purification by the exchange of small molecules through a semi-permeable membrane. In this study, we investigated the potential of three forms of umbilical cord-derived MSC secretome (UC-MSC-S)-native (S), dialyzed (DS), and lyophilized (LDS)-for wound healing applications.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.
Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.
Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).
View Article and Find Full Text PDFCurr Hypertens Rep
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
Purpose Of Review: The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!