The hepatotoxicity of bromobenzene is strongly correlated with the covalent binding of chemically reactive metabolites to cellular proteins, but up to now relatively few hepatic protein targets of these reactive metabolites have been identified. To identify additional hepatic protein targets we injected an hepatotoxic dose of [14C]bromobenzene to phenobarbital-pretreated male Sprague-Dawley rats ip. After 4 h, their livers were removed and homogenized, and the homogenates fractionated by differential ultracentrifugation. The highest specific radiolabeling (6.1 nmol equiv 14C/mg of protein) was observed in a particulate fraction (P25) sedimented at 25000g from a 6000g supernatant fraction. Proteins in this fraction were separated by two-dimensional electrophoresis and, after transblotting, analyzed for radioactivity by phosphorimaging. More than 20 radiolabeled protein spots were observed in the blots. For 17 of these spots, peptide mass maps were obtained using in-gel digestion with trypsin, followed by MALDI-TOF mass spectrometric analysis of the resulting peptide mixtures. By searching genomic databases, the 17 sets of MS-derived peptide masses were found to match predicted tryptic fragments of just 7 proteins. Spots 1-4 matched with 78 kDa glucose regulated protein (GRP78), protein disulfide isomerase isozyme A1 (PDIA1), endoplasmic reticulum protein ERp29, and PDIA6, respectively. Spots 5 and 6, 7-11, and 12-17 presented as apparent "charge trains" of spots, each of which gave peptide mixtures closely similar to those of other spots within the train. The proteins present in these sets of spots were identified as transthyretin, serum albumin precursor and PDIA3, respectively. The possible relationship of the adduction of these proteins to the toxicological outcome is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx0101898DOI Listing

Publication Analysis

Top Keywords

reactive metabolites
12
endoplasmic reticulum
8
targets reactive
8
hepatic protein
8
protein targets
8
spots peptide
8
peptide mixtures
8
protein
7
spots
7
proteins
5

Similar Publications

Objectives: Many chemicals have been used for industrial purposes, and some of them are carcinogenic to humans. However, their molecular mechanisms have not been well understood. Reactive oxygen species are generated from industrial chemicals and contribute to carcinogenesis.

View Article and Find Full Text PDF

2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in () were investigated through physiological and nontargeted metabolomic assessments.

View Article and Find Full Text PDF

It has been known since the early days of the discovery of aflatoxin B1 (AFB1) that there were large species differences in susceptibility to AFB1. It was also evident early on that AFB1 itself was not toxic but required bioactivation to a reactive form. Over the past 60 years there have been thousands of studies to delineate the role of ~10 specific biotransformation pathways of AFB1, both phase I (oxidation, reduction) and phase II (hydrolysis, conjugation, secondary oxidations, and reductions of phase I metabolites).

View Article and Find Full Text PDF

Polyunsaturated fatty acids in particular omega-3 fatty acids, such as docosahexaenoic acid (DHA), are essential nutrients and components of the plasma membrane. They are involved in various processes, including synaptic development, functionality, integrity, and plasticity, and are therefore thought to have general neuroprotective properties. Considerable research evidence further supports the beneficial effects of omega-3 fatty acids, specifically on mitochondria, through their antioxidant and anti-apoptotic properties, making them an attractive addition in treatment options for neurodegenerative disorders in which mitochondrial alterations are commonly observed.

View Article and Find Full Text PDF

Untreated hyperprolactinemia and autoimmune thyroiditis (Hashimoto's disease) seem to increase cardiometabolic risk. The cardiometabolic effects of cabergoline were less significant in young women with concurrent euthyroid Hashimoto's illness. This study sought to investigate if the detrimental effects of this condition on cabergoline efficacy are also evident in postmenopausal women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!