The regioselectivity of phase II conjugation of flavonoids is expected to be of importance for their biological activity. In the present study, the regioselectivity of phase II biotransformation of the model flavonoids luteolin and quercetin by UDP-glucuronosyltransferases was investigated. Identification of the metabolites formed in microsomal incubations with luteolin or quercetin was done using HPLC, LC-MS, and (1)H NMR. The results obtained demonstrate the major sites for glucuronidation to be the 7-, 3-, 3'-, or 4'-hydroxyl moiety. Using these unequivocal identifications, the regioselectivity of the glucuronidation of luteolin and quercetin by microsomal samples from different origin, i.e., rat and human intestine and liver, as well as by various individual human UDP-glucuronosyltransferase isoenzymes was characterized. The results obtained reveal that regioselectivity is dependent on the model flavonoid of interest, glucuronidation of luteolin and quercetin not following the same pattern, depending on the isoenzyme of UDP-glucuronosyltransferases (UGT) involved. Human UGT1A1, UGT1A8, and UGT1A9 were shown to be especially active in conjugation of both flavonoids, whereas UGT1A4 and UGT1A10 and the isoenzymes from the UGTB family, UGT2B7 and UGT2B15, were less efficient. Due to the different regioselectivity and activity displayed by the various UDP-glucuronosyltransferases, regioselectivity and rate of flavonoid conjugation varies with species and organ. Qualitative comparison of the regioselectivities of glucuronidation obtained with human intestine and liver microsomes to those obtained with human UGT isoenzymes indicates that, in human liver, especially UGT1A9 and, in intestine, UGT1A1 and UGT1A8 are involved in glucuronidation of quercetin and luteolin. Taking into account the fact that the anti-oxidant action as well as the pro-oxidant toxicity of these catechol-type flavonoids is especially related to their 3',4'-dihydroxyl moiety, it is of interest to note that the human intestine UGT's appear to be especially effective in conjugating this 3',4' catechol unit. This would imply that upon glucuronidation along the transport across the intestinal border, the flavonoids loose a significant part of these biological activities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx0101705DOI Listing

Publication Analysis

Top Keywords

luteolin quercetin
20
regioselectivity phase
12
human intestine
12
conjugation flavonoids
8
glucuronidation luteolin
8
intestine liver
8
ugt1a1 ugt1a8
8
regioselectivity
7
human
7
luteolin
6

Similar Publications

Integrated Network Pharmacology, Machine Learning and Experimental Validation to Identify the Key Targets and Compounds of for the Treatment of Breast Cancer.

Onco Targets Ther

January 2025

Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.

Background: TiaoShenGongJian (TSGJ) decoction, a traditional Chinese medicine for breast cancer, has unknown active compounds, targets, and mechanisms. This study identifies TSGJ's key targets and compounds for breast cancer treatment through network pharmacology, machine learning, and experimental validation.

Methods: Bioactive components and targets of TSGJ were identified from the TCMSP database, and breast cancer-related targets from GeneCards, PharmGkb, and RNA-seq datasets.

View Article and Find Full Text PDF

Green waste from Cucurbitaceae agriculture is a common but underutilised resource. In this study, we performed targeted HPLC-PDA-MS profiling to analyse the flavonoid composition of L.f.

View Article and Find Full Text PDF

This study attempted to explore the molecular mechanism of Epimedium herb (EH) on rheumatoid arthritis (RA) treatment. We employed network pharmacology, molecular docking, and HPLC analysis to investigate the molecular mechanisms underlying the efficacy of EH in treating RA. To assess the efficacy of EH intervention, RA fibroblast-like synoviocytes (RA-FLS) and collagen-induced arthritis (CIA) mouse models were utilized.

View Article and Find Full Text PDF

Endometriosis, though not classified as a carcinogenic condition, shares features such as oxidative stress, migration, invasion, angiogenesis, and inflammation with tumor cells. This study aims to review the effects of flavonoids on these processes and their molecular mechanisms in preventing and treating endometriosis. A comprehensive review was conducted, involving a literature search in online databases using keywords like "endometriosis," "endometrioma," and "flavonoid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!