A major human arsenic metabolite, dimethylarsinic acid, requires reduced glutathione to induce apoptosis.

Chem Res Toxicol

Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

Published: May 2002

Inorganic arsenicals are important environmental toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenicals often undergo methylation, forming compounds such as dimethyarsinic acid (DMA). Recent evidence indicates DMA is a complete carcinogen in rodents while evidence for inorganic arsenicals as carcinogens in rodents remains equivocal. Thus, we studied the molecular mechanisms of in vitro cytolethality of DMA compared to that of the trivalent inorganic arsenical, sodium arsenite, using a rat liver epithelial cell line (TRL 1215). Arsenite was very cytotoxic in these cells (LC(50) = 35 microM after 48 h of exposure). With arsenite exposure, most dead cells showed histological and biochemical evidence of necrosis. Arsenite cytotoxicity increased markedly when cellular GSH was depleted with the glutathione synthase inhibitor, L-buthionine-[S,R]-sulfoximine (BSO). In contrast, DMA was nearly 3 orders of magnitude less cytotoxic (LC(50) = 1.5 mM) although evidence showed the predominating form of death was apoptosis. Surprisingly, GSH depletion actually decreased DMA-induced apoptosis. A glutathione scavenger, diethyl maleate (DEM), and a glutathione reductase inhibitor, carmustine, also prevented DMA-induced apoptosis. These data indicate that DMA requires intracellular GSH to induce apoptosis. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyzes GSH-substrate conjugation, acivicin, an inhibitor of gamma-glutamyltranspeptidase (GGT) which catalyzes the initial breakdown of GSH-substrate conjugates, and aminooxyacetic acid (AOAA), an inhibitor of beta-lyase which catalyzes the final breakdown of GSH-substrate conjugates, all were effective in suppressing DMA-induced apoptosis. These findings indicate that DMA likely is conjugated in some form with GSH, and that it is this conjugate that induces apoptosis during subsequent metabolic reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx0101604DOI Listing

Publication Analysis

Top Keywords

inorganic arsenicals
12
dma-induced apoptosis
12
induce apoptosis
8
indicate dma
8
breakdown gsh-substrate
8
gsh-substrate conjugates
8
apoptosis
7
dma
6
glutathione
5
inhibitor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!