The frequencies of the CYP1A1 valine allele, homozygous deletions of GSTM1 and GSTT1, and two point mutations of the NAT2 gene, (C481-->T) and S2 (G590-->A), were compared in healthy children and children having bronchial asthma. The S1 mutation was associated with resistance, and all of the other traits, with predisposition to the disease. In families of patients with diseased progenitors and in those with healthy progenitors, the estimates of the asthma risk were similar. In both groups, parameters of the trait association with the disease depended on passive smoking. At passive smoking, a trend to an overrepresentation (high odds ratio, OR) of the GSTM1 null genotype and S2 mutation of the NAT2 gene was observed, whereas the odds ratio of the GSTT1 null genotype decreased, and those of the CYP1A1 and S1 mutation of the NAT2 gene remained unchanged. The highest OR = 36.25 (P < 0.01) was characteristic of the GSTT1 null genotype in nonsmoking hereditary burdened patients. The results obtained suggest an important role of xenobiotic-metabolizing enzymes in development of bronchial asthma.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bronchial asthma
12
nat2 gene
12
null genotype
12
xenobiotic-metabolizing enzymes
8
passive smoking
8
odds ratio
8
mutation nat2
8
gstt1 null
8
[polymorphic genes
4
genes xenobiotic-metabolizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!