A detailed understanding of the hormonal regulation of spermatogenesis is required for the informed assessment and management of male fertility and, conversely, for the development of safe and reversible male hormonal contraception. An approach to the study of these issues is outlined based on the use of well-defined in vivo models of gonadotropin/androgen deprivation and replacement, the quantitative assessment of germ cell number using stereological techniques, and the directed study of specific steps in spermatogenesis shown to be hormone dependent. Drawing together data from rat, monkey, and human models, we identify differences between species and formulate an overview of the hormonal regulation of spermatogenesis. There is good evidence for both separate and synergistic roles for both testosterone and follicle-stimulating hormone (FSH) in achieving quantitatively normal spermatogenesis. Based on relatively selective withdrawal and replacement studies, FSH has key roles in the progression of type A to B spermatogonia and, in synergy with testosterone, in regulating germ cell viability. Testosterone is an absolute requirement for spermatogenesis. In rats, it has been shown to promote the adhesion of round spermatids to Sertoli cells, without which they are sloughed from the epithelium and spermatid elongation fails. The release of mature elongated spermatids from the testis (spermiation) is also under FSH/testosterone control in rats. Data from monkeys and men treated with steroidal contraceptives indicate that impairment of spermiation is a key to achieving azoospermia. The contribution of 5alpha-reduced androgens in the testis to the regulation of spermatogenesis is also relevant, as 5alpha-reduced androgens are maintained during gonadotropin suppression and may act to maintain low levels of germ cell development. These concepts are also discussed in the context of male hormonal contraceptive development.

Download full-text PDF

Source
http://dx.doi.org/10.1210/rp.57.1.149DOI Listing

Publication Analysis

Top Keywords

regulation spermatogenesis
16
hormonal regulation
12
germ cell
12
spermatogenesis rats
8
male hormonal
8
5alpha-reduced androgens
8
spermatogenesis
7
hormonal
5
identification specific
4
specific sites
4

Similar Publications

Tight junctions (TJs) between adjacent Sertoli cells are believed to form immunological barriers that protect spermatogenic cells expressing autoantigens from autoimmune responses. However, there is no direct evidence that Sertoli cell TJs (SCTJs) do indeed form immunological barriers. Here, we analyzed male mice lacking claudin-11 (Cldn11), which encodes a SCTJ component, and found autoantibodies against antigens of spermatocytes/spermatids in their sera.

View Article and Find Full Text PDF

Research progress on Sertoli cell secretion during spermatogenesis.

Front Endocrinol (Lausanne)

January 2025

Sichuan Provincial Key Laboratory of Traditional Chinese Medicine Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.

Sertoli cells (SCs), as the somatic cells in the testis of male mammals, play a crucial role in the close association with germ cells. The blood-testicular barrier (BTB), established by their tight junctions, provides immune protection to germ cells, leading to their characterization as "sentinel" cells. Moreover, the physiological process of testicular development and spermatogenesis in male animals is intricately tied to the secretory activities of SCs.

View Article and Find Full Text PDF

The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments.

View Article and Find Full Text PDF

Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.

View Article and Find Full Text PDF

ubiquitin ligase regulates dichotomous spermatogenesis in .

Front Cell Dev Biol

January 2025

Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.

Spermatogenesis in Lepidoptera holds significant importance due to its unique process of dichotomous spermatogenesis, yielding eupyrene and apyrene spermatozoa through a complex molecular mechanism. While E3 ubiquitin ligases are known to play vital roles in spermatogenesis across various processes, their functions in dichotomous spermatogenesis remain less known. We utilized the RNAi, biochemical and microscopic procedures to unravel the function of in dichotomous spermatogenesis of adult .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!