The human SNF5/INI1 protein facilitates the function of the growth arrest and DNA damage-inducible protein (GADD34) and modulates GADD34-bound protein phosphatase-1 activity.

J Biol Chem

Division of Medical Oncology, Department of Medicine, Veterans Administration Puget Sound Health Care System, Seattle Division, Seattle, Washington 98108, USA.

Published: August 2002

The growth arrest and DNA damage-inducible protein (GADD34) mediates growth arrest and apoptosis in response to DNA damage, negative growth signals, and protein malfolding. GADD34 binds to protein phosphatase-1 (PP1) and can attenuate translational elongation of key transcriptional factors through dephosphorylation of eukaryotic initiation factor-2alpha. We reported previously that the human trithorax leukemia fusion protein (HRX) can bind to GADD34 and abrogate GADD34-mediated apoptosis in response to UV irradiation. We found that hSNF5/INI1, a component of the hSWI/SNF chromatin remodeling complex, also binds to GADD34 and can coexist with GADD34 and HRX fusion proteins as a trimolecular complexes in vivo. In the present report, we demonstrate that hSNF5/INI1 binds to GADD34 in part through the PP1 docking site within a domain homologous to herpes simplex virus-1 ICP34.5. We found that hSNF5/INI1 can bind PP1 independently and weakly stimulate its phosphatase activity in solution and in complex with GADD34. hSNF5/INI1 and PP1 do not compete for binding to GADD34 but rather form a stable heterotrimeric complex with GADD34. We also show that Epstein-Barr nuclear protein 2, which binds hSNF5/INI1, can disrupt hSNF5/INI1 binding to GADD34 and partially reverse the GADD34-mediated growth suppression function in Ha-ras expressing HIH-3T3 (3T3-ras) cells. These results implicate hSNF5/INI1 in the function of GADD34 and suggest that hSNF5/INI1 may regulate PP1 activity in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M200955200DOI Listing

Publication Analysis

Top Keywords

growth arrest
12
gadd34
12
protein
8
arrest dna
8
dna damage-inducible
8
damage-inducible protein
8
protein gadd34
8
protein phosphatase-1
8
apoptosis response
8
hsnf5/ini1
8

Similar Publications

Design and Mechanism Study of 6c, a Novel Artesunate Derivatives, for Anti-Hepatocellular Carcinoma.

J Hepatocell Carcinoma

January 2025

Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, Shandong, People's Republic of China.

Objective: Artesunate can inhibit the proliferation of various tumor cells and has practical value in developing anti-tumor drugs. However, its biological activity against hepatocellular carcinoma is weak. The efficacy of its anti-tumor effect needs to be improved.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is characterized by its aggressive nature and resistance to standard chemotherapy, necessitating the development of new therapeutic approaches. The emergence of natural products and their derivatives has notably influenced cancer treatment, making morusinol, a medicine-derived monomer, a promising candidate. Here, we showed that morusinol exerted antitumor effects on DLBCL in vitro by inducing apoptosis and cell cycle arrest.

View Article and Find Full Text PDF

With the continuous advancements in modern medicine, significant progress has been made in the treatment of lung cancer. Current standard treatments, such as surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have notably improved patient survival. However, the adverse effects associated with these therapies limit their use and impact the overall treatment process.

View Article and Find Full Text PDF

Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance via the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!