Normal human colonic microvascular endothelial cells (HUCMEC) have been isolated from surgical specimens by their adherence to Ulex europaeus agglutinin bound to magnetic dynabeads that bind alpha-L-fucosyl residues on the endothelial cell membrane. Immunocytochemistry demonstrated the presence of a range of endothelial-specific markers on HUCMEC, including the von Willebrand factor, Ulex europaeus agglutinin, and platelet endothelial cell adhesion molecule-1. The growing cells form monolayers with the characteristic cobblestone morphology of endothelial cells and eventually form tube-like structures. HUCMEC produce vascular endothelial growth factor (VEGF) and express the receptors, kinase insert domain-containing receptor (KDR) and fms-like tyrosine kinase, through which VEGF mediates its actions in the endothelium. VEGF induces the tyrosine phosphorylation of KDR and a proliferative response from HUCMEC comparable to that elicited from human umbilical vein endothelial cells (HUVEC). On binding to HUCMEC or HUVEC, (125)I-labeled VEGF internalizes or dissociates to the medium. Once internalized, (125)I-labeled VEGF is degraded and no evidence of ligand recycling was observed. However, significantly less VEGF is internalized, and more is released to the medium from HUCMEC than HUVEC. Angiogenesis results from the proliferation and migration of microvascular, not large-vessel, endothelial cells. The demonstration that microvascular endothelial cells degrade less and release more VEGF to the medium than large-vessel endothelial cells identifies a mechanism permissive of the role of microvascular cells in angiogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00250.2001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!