A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of CCK(A) receptor affinity states and Ca(2+) signal transduction in vagal nodose ganglia. | LitMetric

Characterization of CCK(A) receptor affinity states and Ca(2+) signal transduction in vagal nodose ganglia.

Am J Physiol Gastrointest Liver Physiol

Gastroenterology Research Unit, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.

Published: June 2002

AI Article Synopsis

  • CCK(A) receptors, found on vagal afferent fibers, exhibit both high- and low-affinity states in nodose ganglia, influencing calcium signaling.
  • Stimulation with CCK-8 leads to different calcium responses: a transient followed by a plateau at 1 nM and oscillations at 10 pM, with CCK-OPE eliciting oscillations and inhibiting the transient.
  • The study highlights that L-type calcium channels are crucial for CCK(A) receptor signaling, while G proteins, particularly G(q), also play a key role in this calcium response mechanism.

Article Abstract

CCK(A) receptors are present on vagal afferent fibers. The objectives of this study were to identify the presence of high- and low-affinity CCK(A) receptors on nodose ganglia and to characterize the intracellular calcium signal transduction activated by CCK. Stimulation of acutely isolated nodose ganglion cells from rats with 1 nM CCK-8 primarily evoked a Ca(2+) transient followed by a sustained Ca(2+) plateau (45% of cells responded), whereas 10 pM CCK-8 evoked Ca(2+) oscillations (37% of cells responded). CCK-OPE, a high-affinity agonist and low-affinity antagonist of CCK(A) receptors, primarily elicited Ca(2+) oscillations (29% of cells responded). CCK-OPE inhibited the Ca(2+) transient induced by 1 nM CCK-8 but not by carbachol and high K(+). This result suggests the presence of high- and low-affinity states of CCK(A) receptors on nodose ganglia. We further demonstrated that nicardipine (10 microM) but not omega-conotoxins GVIA and MVIIC (10-100 nM) abolished Ca(2+) signaling induced by CCK-8, indicating that an L-type voltage-dependent Ca(2+) channel and not an N- or Q-type Ca(2+) channel is coupled to CCK(A) receptors. In a separate study, we showed that the G protein activator NaF (10 mM) elicited a Ca(2+) transient and inhibited CCK-8-evoked Ca(2+) signaling, indicative of G protein(s) involvement in CCK(A) receptor activity. The G(q) protein antagonist Gp antagonist-2A (10 microM) also abolished the action of CCK-8. This study indicates that CCK(A) receptors exist in both high- and low-affinity states in the nodose ganglia. Activation of high-affinity CCK(A) receptors elicits Ca(2+) oscillations, whereas stimulation of low-affinity CCK(A) receptors evokes a sustained Ca(2+) plateau. These Ca(2+)-signaling modes are mediated through the L-type Ca(2+) channel and involve the participation of G(q) protein.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00313.2001DOI Listing

Publication Analysis

Top Keywords

ccka receptors
32
nodose ganglia
16
ca2+
14
high- low-affinity
12
ca2+ transient
12
cells responded
12
ca2+ oscillations
12
ca2+ channel
12
ccka
9
ccka receptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!