Lactic acid bacteria (LAB) are widely used in the agro-food industry. Some of the LAB also participate in the natural flora in humans and animals. We review here proteomic studies concerning LAB. Two methods of research can be distinguished. In the first one, a systematic mapping of proteins is attempted, which will be useful for taxonomy and to function assignment of proteins. The second one focuses particularly on proteins whose synthesis is induced by various environmental situations or stresses. However, both approaches are complementary and will give new insights for the use of bacteria in industry, in human health and in the struggle against bacterial pathogens. Interest in LAB is growing, showing thus an increasing concern of their rational use and one can foresee in the near future an increasing use of proteomics as well as genomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1570-0232(01)00624-9 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Laboratorio de Bacterias Lcticas y Probiticos, Instituto de Agroqumica y Tecnologa de Alimentos (IATA-CSIC), Av. Agustn Escardino 7, 46980 Paterna, Spain.
A novel strain of the genus , named He02, was isolated from flowers of L. in a survey for lactic acid bacteria associated with wild and cultivated plants in the metropolitan area of Valencia, Spain. Partial 16S rRNA gene sequencing revealed a similarity of 99% to DSM 23037=Ryu1-2.
View Article and Find Full Text PDFIntensive Care Med Exp
January 2025
Department of Life Sciences, Aberystwyth University, Ceredigion, UK.
Purpose: The landiolol and organ failure in patients with septic shock (STRESS-L study) included a pre-planned sub-study to assess the effect of landiolol treatment on inflammatory and metabolomic markers.
Methods: Samples collected from 91 patients randomised to STRESS-L were profiled for immune and metabolomic markers. A panel of pro- and anti-inflammatory cytokines were measured through commercially acquired multiplex Luminex assays and statistically analysed by individual and cluster-level analysis (patient).
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States.
Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Magnesium oxide (MgO) is known for its bioactivity and osteoconductivity when incorporated into biodegradable poly(lactic acid) (PLA), whereas the weak interfacial bonding between MgO microspheres (mMPs) and PLA often leads to suboptimal composite properties with uncontrollable functionality. Conjugation of mMPs with PLA may offer a good way to enhance their compatibility. In this study, we systematically investigated two grafting techniques, solution grafting (Sol) and melt grafting (Mel), to decorate poly (D-lactic acid) (PDLA) on mMPs pre-treated by prioritized hydration to obtain Sol MPs and Mel MPs, in order to optimize the grafting efficiency and improve their controllability in the properties including the crystal structure and surface morphology.
View Article and Find Full Text PDFFront Pharmacol
January 2025
School of Pharmacy, Xinjiang Medical University, Urumchi, China.
Background: In the Kazakh community of Xinjiang, China, fermented camel milk has been traditionally used to manage diabetes. This study evaluates the effects of composite probiotics derived from fermented camel milk (CPCM) on metabolic disturbances in a rat model of Type 2 diabetes (T2DM).
Methods: T2DM was induced in Wistar rats using streptozotocin.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!