Many high-molecular-mass (HMM) proteins (MW>100 kDa) are known to be involved in cytoskeleton, defence and immunity, transcription and translation in higher eukaryotic organisms. Even in the post-genomic era, purification of HMM protein is the first important step to analyze protein composition in a tissue or a cell (proteomics), to determine protein tertiary structure (structural biology), and to investigate protein function (functional genomics). To separate a HMM protein from a protein mixture, ions, chaotropes (urea and thiourea), detergents and protease inhibitors in extraction media and buffer solutions either for liquid chromatography or for gel electrophoresis should be carefully chosen, since HMM proteins tend to be aggregates under denatured condition and their long polypeptide chains are easily attacked by intrinsic proteases during separation procedure. Among many liquid chromatography techniques, affinity chromatography either with sequence-specific DNA for transcription factor, or with monoclonal antibody specific for myosin heavy chain has been used for preparative isolation of the respective HMM proteins. Though SDS-PAGE could analyze the size and the quantity of megadalton proteins, the resolution of HMM proteins is relatively poor. A newly developed pulse SDS-PAGE would be able to raise the resolution of HMM proteins compared with the conventional SDS-PAGE. The 2-DE method is not particularly suitable in analyzing HMM proteins larger than 200 kDa. However, a 2-DE method that uses an agarose IEF gel in the first dimension (agarose 2-DE) has been shown to produce significant improvements in 2-DE separation of HMM proteins larger than 150 kDa and up to 500 kDa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1570-0232(02)00112-5 | DOI Listing |
PLoS One
January 2025
School of Public Health, Anhui University of Science and Technology, Hefei, China.
A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.
has been identified in human and mouse HD brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 that contributes to aggregate formation and neuronal dysfunction (Sathasivam et al., 2013). Detection of the HTT exon 1 protein (HTTex1p) has been accomplished with surrogate antibodies in fluorescence-based reporter assays (MSD, HTRF), and immunoprecipitation assays, in HD postmortem cerebellum and knock-in mice but direct detection by SDS-PAGE and western blot assay has been lacking.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
The heat shock protein 70 (HSP70) family plays an important role in the growth and development of lettuce and in the defense response to high-temperature stress; however, its bioinformatics analysis in lettuce has been extremely limited. Genome-wide bioinformatics analysis methods such as chromosome location, phylogenetic relationships, gene structure, collinearity analysis, and promoter analysis were performed in the gene family, and the expression patterns in response to high-temperature stress were analyzed. The mechanism of in heat resistance in lettuce was studied by virus-induced gene silencing (VIGS) and transient overexpression techniques.
View Article and Find Full Text PDFmBio
December 2024
Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
Unlabelled: Metatranscriptomics is uncovering more and more diverse families of viruses with RNA genomes comprising the viral kingdom Orthornavirae in the realm Riboviria. Thorough protein annotation and comparison are essential to get insights into the functions of viral proteins and virus evolution. In addition to sequence- and hmm profile‑based methods, protein structure comparison adds a powerful tool to uncover protein functions and relationships.
View Article and Find Full Text PDFIntroduction: Hedysarum Multijugum Maxim (HMM), a Chinese traditional medicine , exerts anti-tumor effects and has been extensively studied for its potential to treat cancer in recent years. Clinical research has shown that HMM can control hepatocellular cancer, but the exact molecular mechanism is unclear.
Methods: To identify the principal bioactive constituents of HMM and their corresponding targets, we constructed a protein-protein interaction (PPI) network.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!