ING1 proteins are nuclear, growth inhibitory, and regulate apoptosis in different experimental systems. Here we show that similar to their yeast homologs, human ING1 proteins interact with proteins associated with histone acetyltransferase (HAT) activity, such as TRRAP, PCAF, CBP, and p300. Human ING1 immunocomplexes contain HAT activity, and overexpression of p33(ING1b), but not of p47(ING1a), induces hyperacetylation of histones H3 and H4, in vitro and in vivo at the single cell level. p47(ING1a) inhibits histone acetylation in vitro and in vivo and binds the histone deacetylase HDAC1. Finally, we present evidence indicating that p33(ING1b) affects the degree of physical association between proliferating cell nuclear antigen (PCNA) and p300, an association that has been proposed to link DNA repair to chromatin remodeling. Together with the finding that human ING1 proteins bind PCNA in a DNA damage-dependent manner, these data suggest that ING1 proteins provide a direct linkage between DNA repair, apoptosis, and chromatin remodeling via multiple HAT.ING1.PCNA protein complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M200197200DOI Listing

Publication Analysis

Top Keywords

ing1 proteins
20
human ing1
16
histone acetylation
8
hat activity
8
vitro vivo
8
dna repair
8
chromatin remodeling
8
proteins
6
ing1
5
human
4

Similar Publications

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

This study investigated the protective effect of dulcitol on LPS-induced intestinal injury in piglets and explored the underlying molecular mechanisms. A total of 108 piglets were divided into three groups: CON, LPS, and DUL. The CON and LPS groups were fed a basal diet, the DUL group was fed a diet supplementation with 500 mg/kg dulcitol.

View Article and Find Full Text PDF

Comprehensive analysis of clinical and biological value of family genes in liver cancer.

World J Gastrointest Oncol

June 2024

School of Medical Information, Wannan Medical College, Wuhu 241002, Anhui Province, China.

Background: Liver cancer (LIHC) is a malignant tumor that occurs in the liver and has a high mortality in cancer. The family genes were identified as tumor suppressor genes. Dysregulated expression of these genes can lead to cell cycle arrest, senescence and/or apoptosis.

View Article and Find Full Text PDF

ING1 inhibits Twist1 expression to block EMT and is antagonized by the HDAC inhibitor vorinostat.

Eur J Cell Biol

September 2023

Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada. Electronic address:

ING1 is a chromatin targeting subunit of the Sin3a histone deacetylase (HDAC) complex that alters chromatin structure to subsequently regulate gene expression. We find that ING1 knockdown increases expression of Twist1, Zeb 1&2, Snai1, Bmi1 and TSHZ1 drivers of EMT, promoting EMT and cell motility. ING1 expression had the opposite effect, promoting epithelial cell morphology and inhibiting basal and TGF-β-induced motility in 3D organoid cultures.

View Article and Find Full Text PDF

DNA methylation of RUNX3 promotes the progression of gallbladder cancer through repressing SLC7A11-mediated ferroptosis.

Cell Signal

August 2023

Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China. Electronic address:

Gallbladder cancer (GBC) is a type of rare but highly aggressive cancer with a dismal prognosis. Runt-related transcription factor 3 (RUNX3), a member of the runt-domain family, and its promoter methylation have been widely observed in a variety of human malignancies. However, the biological function and underlying mechanism of RUNX3 in GBC remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!