Cdc48-Ufd1-Npl4: stuck in the middle with Ub.

Curr Biol

Exelixis, Inc., 170 Harbor Way, South San Francisco, California 94080, USA.

Published: May 2002

The ubiquitin-proteasome pathway has a well-defined beginning and end. Target proteins are initially recognized by upstream components and tagged with polyubiquitin chains. The 26S proteasome then degrades these polyubiquitinated proteins. Until recently, it was not known what, if any, steps occurred between the initial polyubiquitination of target proteins and their final degradation. Several new papers investigating the function of the Cdc48-Ufd1-Npl4 complex indicate that there is indeed a middle to the ubiquitin-proteasome pathway. The Cdc48-Ufd1-Npl4 complex functions in the recognition of several polyubiquitin-tagged proteins and facilitates their presentation to the 26S proteasome for processive degradation or even more specific processing. The elucidation of Cdc48, Ufd1 and Npl4 action not only provides long-sought functions for these specific proteins, but illuminates a poorly understood part of the ubiquitin-proteasome pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-9822(02)00862-xDOI Listing

Publication Analysis

Top Keywords

ubiquitin-proteasome pathway
12
middle ubiquitin-proteasome
8
target proteins
8
26s proteasome
8
cdc48-ufd1-npl4 complex
8
proteins
5
cdc48-ufd1-npl4 stuck
4
stuck middle
4
pathway well-defined
4
well-defined target
4

Similar Publications

Characterization of SARS-CoV-2 Entry Genes in Skeletal Muscle and Impacts of In Vitro Versus In Vivo Infection.

J Cachexia Sarcopenia Muscle

February 2025

Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.

Background: COVID-19 has been associated with both respiratory (diaphragm) and non-respiratory (limb) muscle atrophy. It is unclear if SARS-CoV-2 infection of skeletal muscle plays a role in these changes. This study sought to: 1) determine if cells comprising skeletal muscle tissue, particularly myofibres, express the molecular components required for SARS-CoV-2 infection; 2) assess the capacity for direct SARS-CoV-2 infection and its impact on atrophy pathway genes in myogenic cells; and 3) in an animal model of COVID-19, examine the relationship between viral infection of skeletal muscle and myofibre atrophy within the diaphragm and limb muscles.

View Article and Find Full Text PDF

The disruption of proteostasis provides a favourable context for the emergence of therapeutic innovations, in particular by exploiting technologies such as the PROTAC (Proteolysis Targeting Chimera) approach. These technologies aim to selectively target proteins involved in various diseases, including cancer and neurodegenerative diseases, by inducing their specific degradation via the ubiquitin-proteasome system. The PROTAC approach opens new opportunities for restoring altered protein homeostasis and modulating the pathological consequences of proteostasis deregulation.

View Article and Find Full Text PDF

Background: Radiation therapy (RT) treats primary and metastatic brain tumors, with about one million Americans surviving beyond six months post-treatment. However, up to 90% of survivors experience RT-induced cognitive impairment. Emerging evidence links cognitive decline to RT-induced endothelial dysfunction in brain microvessels, yet studies of endothelial injury remain limited.

View Article and Find Full Text PDF

Background: In vitro fertilization (IVF) and embryo transfer (ET) are widely used in reproductive biology. Despite the transfer of high-quality blastocysts, the implantation rate of IVF-derived blastocysts remains low after ET.

Methods: This article provides a comprehensive review of current research on embryo implantation regulators and their application to improve the implantation potential of IVF-derived blastocysts.

View Article and Find Full Text PDF

Vacuolization of hematopoietic precursors cells is a common future of several otherwise non-related clinical settings such as VEXAS, Chediak-Higashi syndrome and Danon disease. Although these disorders have a priori nothing to do with one other from a clinical point of view, all share abnormal vacuolization in different cell types including cells of the erythroid/myeloid lineage that is likely the consequence of moderate to drastic dysfunctions in the ubiquitin proteasome system and/or the endo-lysosomal pathway. Indeed, the genes affected in these three diseases UBA1, LYST or LAMP2 are known to be direct or indirect regulators of lysosome trafficking and function and/or of different modes of autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!