A continuous cell line, MC3T3-E1 cells, originally derived from murine calvaria bones, loses its osteogenic properties as a result of extended passage number under stress conditions. These aged/stressed MC3T3-S cells, although nontumorigenic, do not display some of the osteogenic properties characteristic of the MC3T3-E1 cells. Altered properties include low expression of alkaline phosphatase, diminished collagen synthesis and inability to form mineralized nodules in vitro. We attempted to reactivate these osteogenic properties by transfections with a pSV2neo plasmid containing the TGFbeta1 gene. During these experiments we found that transfected MC3T3-S cells not only acquired high alkaline phosphatase activity and a potent mineralization potential, but also properties akin to the transformed state, such as ability to grow in soft agar and ability to produce tumors in immunodeficient animals. Further analysis showed that the TGFbeta1 gene is not required and that the changes can be introduced by transfections with pSV2neo alone. In contrast, MC3T3-S cells transfected with pcDNA3 (a plasmid containing only the SV40 origin of replication, early promoter, enhancer and polyadenylation signals) or mock-transfected MC3T3-S cells did not show any transformation traits. The results identify two additional SV40 fragments present in pSV2neo (SV40 virus sequence; Genbank accession number: NC_001669: 4100-4191 and 2668-2774) as functional elements contributing to the transformation of aged/stressed and immortalized osteoblastic cells. These findings are analogous to earlier reports describing the cell modifying potential of pSV2neo. We conclude that stressed and aged MC3T3-S can be transformed by transfection with pSV2neo and that such cells acquire not only the tumorigenic potential but exhibit also some of the osteogenic properties characteristic of the parent MC3T3-E1 cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mc3t3-e1 cells
16
osteogenic properties
16
mc3t3-s cells
16
cells
10
transfection psv2neo
8
psv2neo plasmid
8
properties characteristic
8
alkaline phosphatase
8
transfections psv2neo
8
tgfbeta1 gene
8

Similar Publications

This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression.

View Article and Find Full Text PDF

Background: Interactions between RNA-binding proteins and RNA regulate RNA transcription during osteoporosis. Ferroptosis, a programmed cell death caused by iron metabolism, plays a vital role in osteoporosis. However, the mechanisms by which RNA-binding proteins are involved in ferroptosis during osteoporosis remain unclear.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

Mongolian medicine Sugemule-7 decoction prevents osteoporosis via Erk1/2 and p38 MAPK signaling pathways according to network pharmacology analysis.

Int J Biol Macromol

December 2024

Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei 075131, China. Electronic address:

Osteoporosis (OP) is a significant global public health concern that requires the development of safe and effective drugs for prevention and treatment. Sugemule-7 (SGML-7) decoction, a traditional Mongolian herbal prescription, has long been used for treating OP, but its components and mechanisms of action remain unclear. The study identified the main compounds of SGML-7 using UHPLC-Q Exactive MS and explored the multi-target mechanisms of SGML-7 in OP through network pharmacology and molecular docking.

View Article and Find Full Text PDF

DOCK5 (dedicator of cytokinesis 5), a guanine nucleotide exchange factor for Rac1, has been implicated in BMP2-mediated osteoblast differentiation, but its specific role in osteogenesis and bone regeneration remained unclear. This study investigated the effect of DOCK5 on bone regeneration using C21, a DOCK5 chemical inhibitor, and Dock5-deficient mice. Osteoblast differentiation and bone regeneration were analyzed using bone marrow mesenchymal stem cells (BMSCs) and various animal models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!