KK mice and KK-Ay mice were examined for age related changes in blood and urinary biophysiological parameters. Blood hemoglobin A1c levels were significantly higher in KK-Ay and KK mice as compared to non-diabetic ddY mice. In both diabetic mice, especially KK-Ay mice, plasma insulin levels markedly increased at 2 to 4 months of age, and the urinary glucose and microalbumin levels and albumin-to-creatinine ratios increased dependent on age. Plasma thrombomodulin levels significantly increased at 2 to 4 months of age in both KK and KK-Ay mice. Mild enlargement of mesangial matrix and segmental proliferative glomerular nephritis were revealed in KK and KK-Ay mice, respectively, at 4 months of age. KK-Ay mice with insulin resistance and high urine mAlb level might be useful as models for the early stage of diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1538/expanim.51.191 | DOI Listing |
J Vet Med Sci
December 2024
Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University.
Many genetic and environmental factors are involved in the development and progression of diabetic kidney disease (DKD), and its pathology shows various characteristics. Animal models of DKD play an important role in elucidating its pathogenesis and developing new therapies. In this study, we investigated the pathophysiological features of two DKD animal models: db/db mice (background of hyperglycemia) and KK-Ay mice (background of hyperinsulinemia).
View Article and Find Full Text PDFRedox Biol
December 2024
Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Guangzhou, 510080, Guangdong, PR China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, PR China. Electronic address:
Statins therapy is efficacious in diminishing the risk of major cardiovascular events in diabetic patients. However, our research has uncovered a correlation between the prolonged administration of statins and an elevated risk of myocardial dysfunction in patients with type II diabetes mellitus (TIIDM). Here, we report the induction of sterol regulatory element-binding protein 1 (SREBP1) activation, associated lipid peroxidation, and the consequent diabetic myocardial dysfunction after statin treatment and explored the underlying mechanisms.
View Article and Find Full Text PDFChin Med
October 2024
School of Traditional Chinese Medicine, Capital Medical University, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China.
Background: Tangshenning (TSN) is a safe and effective formula to treat diabetic nephropathy (DN), and clinical studies have demonstrated that its therapeutic effects are related to oxidative stress improvements in patients. Herein, this study aims to explore the potential mechanism of how TSN alleviates diabetic renal tubular injury.
Methods: The ultrahigh pressure liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS) was used to identify the chemical composition and serum components of TSN.
Chin Med
September 2024
State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
Background: Modified Si-Miao granule (mSMG), a traditional Chinese medicine, is beneficial for T2DM and insulin resistance (IR), but the underlying mechanism remains unknown.
Methods: Using network pharmacology, we screened the compounds of mSMG and identified its targets and pathway on hepatic IR in T2DM. Using molecular docking, we identified the affinity between the compounds and hub target TNF-α.
BMC Endocr Disord
August 2024
Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Background: Nonalcoholic fatty liver disease (NAFLD) shares common pathogenic mechanisms of type 2 diabetes mellitus (T2DM) with upregulated advanced glycation end products (AGEs). Here, we aim to investigate the effect of FPS-ZM1, an inhibitor for receptor for AGEs (RAGE), on lipid deposition in the liver of mice.
Methods: KK-Ay mice were used as models of T2DM with NAFLD, while C57BL/6j mice were controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!