A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prevention of free-radical induced apoptosis by induction of human recombinant Cu, Zn-SOD in pig endothelial cells. | LitMetric

Vascular endothelial cells are the prime target in ischemia reperfusion injury. Growing evidence has shown that one of the main etiologies is considered to be reactive oxygen species (ROS) that induce endothelial-cell death either by necrosis or apoptosis. Cultured porcine endothelial cells were transfected with human copper, zinc-superoxide dismutase (h-Cu, Zn-SOD) to investigate whether these cells can prevent apoptosis from oxidative injury in vitro. The endothelial cells were cultured with SIN-1 (3-morpholinosydnonimine-N-ethylcarbanride) as a donor of peroxinitrite (ONOO(-)). The control cells without the gene transfection developed characteristic apoptotic changes both morphologically and biochemically when they were incubated with SIN-1 of 200 M. However, the cells showed necrosis predominantly when the concentration of SIN-1 was 1,000 M. On the other hand, the cells transfected with h-Cu, Zn-SOD showed significantly less evidence of apoptotic change after exposure to SIN-1. Nitric oxide (NO) did not significantly affect the viability of either the control cells or the transfected cells. One of the potent ROS, peroxinitrite, is considered to play a significant role in ischemia reperfusion injury. SIN-1 can produce peroxinitrite in vitro that induces endothelial-cell damage by apoptosis. This type of cytotoxicity can be successfully prevented by transfection of the h-Cu, Zn-SOD into the cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00147-002-0394-0DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
cells transfected
12
h-cu zn-sod
12
cells
11
ischemia reperfusion
8
reperfusion injury
8
control cells
8
sin-1
5
prevention free-radical
4
free-radical induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!