[Carbohydrate-deficient-glycoprotein syndrome and ophthalmological manifestations].

J Fr Ophtalmol

CHNO des Quinze-Vingts, 28, rue de Charenton, 75571 Paris cedex 12, France.

Published: April 2002

Introduction: Carbohydrate-deficient-glycoprotein syndromes are new described multisystemic diseases. We report here the case of a young boy who presented with CDG syndrome Ia associated with typical ocular disorders.

Case Report: This 18-month-old boy presented facial dysmorphism, ataxia, hypotonia and cerebellar hypoplasia. Ocular examination showed esotropia with nystagmoid movements and at fundoscopy signs of retinitis pigmentosa with foveal hypoplasia. Photopic and scotopic electroretinograms were altered.

Discussion: CDG syndromes are metabolic disorders which affect N-glycoprotein synthesis. Clinical manifestations are various: hypotonia, cerebellar hypoplasia, developmental delay, pericardial effusion, etc. Four variants are described; each of them is associated with particular clinical disorders and prognosis. Ocular features are frequently associated (esotropia, retinitis pigmentosa) and especially in CDG syndrome Ia.

Conclusion: Esotropia associated with fundus alterations appearing in a multisystemic disorder requires explorations to search for CDG syndrome.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cdg syndrome
12
boy presented
8
hypotonia cerebellar
8
cerebellar hypoplasia
8
retinitis pigmentosa
8
[carbohydrate-deficient-glycoprotein syndrome
4
syndrome ophthalmological
4
ophthalmological manifestations]
4
manifestations] introduction
4
introduction carbohydrate-deficient-glycoprotein
4

Similar Publications

Exploiting O-GlcNAc dyshomeostasis to screen O-GlcNAc transferase intellectual disability variants.

Stem Cell Reports

January 2025

Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK. Electronic address:

O-GlcNAcylation is an essential protein modification catalyzed by O-GlcNAc transferase (OGT). Missense variants in OGT are linked to a novel intellectual disability syndrome known as OGT congenital disorder of glycosylation (OGT-CDG). The mechanisms by which OGT missense variants lead to this heterogeneous syndrome are not understood, and no unified method exists for dissecting pathogenic from non-pathogenic variants.

View Article and Find Full Text PDF

Loss-of-function variants in ATP6V0A2, encoding the trans Golgi V-ATPase subunit V0a2, cause wrinkly skin syndrome (WSS), a connective tissue disorder with glycosylation defects and aberrant cortical neuron migration. We used knock-out (Atp6v0a2) and knock-in (Atp6v0a2) mice harboring the R755Q missense mutation selectively abolishing V0a2-mediated proton transport to investigate the WSS pathomechanism. Homozygous mutants from both strains displayed a reduction of growth, dermis thickness, and elastic fiber formation compatible with WSS.

View Article and Find Full Text PDF

Background: Congenital disorders of glycosylation (CDG) are a group of neurometabolic diseases that result from genetic defects in the glycosylation of proteins and/or lipids. Multiple pathogenic genes contribute to the varying reported phenotypes of individuals with CDG-1 syndromes, most of which are inherited as autosomal recessive traits, although X-linked inheritance has also been reported. Pathogenic variants in the asparagine-linked glycosylation 13 homolog (ALG13) gene have been implicated in the aetiology of developmental and epileptic encephalopathy (DEE) 36 (OMIM:*300776, DEE36).

View Article and Find Full Text PDF

Background: Severe bacterial infections can trigger acute lung injury (ALI) and acute respiratory distress syndrome, with bacterial pathogen-associated molecular patterns (PAMPs) exacerbating the inflammatory response, particularly in COVID-19 patients. Cyclic-di-GMP (CDG), one of the PAMPs, is synthesized by various Gram-positve and Gram-negative bacteria. Previous studies mainly focused on the inflammatory responses triggered by intracellular bacteria-released CDG.

View Article and Find Full Text PDF

Absence of Pathogenic Mutations and Strong Association With HLA-DRB1*11:01 in Statin-Naïve Early-Onset Anti-HMGCR Necrotizing Myopathy.

Neurol Neuroimmunol Neuroinflamm

September 2024

From the Department of Neurology (L.L., C.L., M.C.-Á., Á.C., A.V., L.Q., E.G., M.O.), Neuromuscular Diseases Unit; Department of Genetics (A.S.-C., B.R.-S.), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Department of Neurology (C.D.-G.), Neuromuscular Diseases Unit, Hospital Universitario 12 de Octubre. Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Université Paris-Est Créteil (E.M.), INSERM, U955 IMRB; AP-HP, Hôpital Mondor, FHU SENEC, Service d'Histologie, Créteil, France; Department of Neurology (S.K.), Neuromuscular Diseases Unit, Osakidetza Basque Health Service, Basurto University Hospital, Universidad del País Vasco, Bilbao; Institut de Recerca Sant Pau (IR Sant Pau) (B.R.-S., R.B., C.L., L.Q., E.G., M.O.), Barcelona; Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid; Genomic Instability Syndromes and DNA Repair Group and Join Research Unit on Genomic Medicine UAB (B.R.-S.), Institut de Recerca Sant Pau (IR Sant Pau), Hospital de la Santa Creu i Sant Pau; Immunology Department (O.C., A.M.), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain; Department of Genetics (A.D.), Craiova University Hospital, Romania; Neuropaediatrics Department (A.N.O.), Neuromuscular Diseases Unit, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, CIBERER - ISC III; Neurology Department (A.P., L.G.-M.), Neuromuscular Unit, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Pathology Department (A.H.-L.), Neuropathology Unit, Hospital Universitario 12 de Octubre, Madrid; Pathology Department (C.J.), Institut Pediàtric de Recerca, Hospital Sant Joan de Déu, and MetabERN, Barcelona; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid; Department of Neurology (L.G.-M.), Hospital de Viladecans, Barcelona; and Department of Genetics (A.A.), Hospital Universitario 12 de Octubre, Research Institute imas12, Madrid, Spain.

Background And Objectives: Immune-mediated necrotizing myopathy (IMNM) caused by antibodies against 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is an inflammatory myopathy that has been epidemiologically correlated with previous statin exposure. We characterized in detail a series of 11 young statin-naïve patients experiencing a chronic disease course mimicking a limb-girdle muscular dystrophy. With the hypothesis that HMGCR upregulation may increase immunogenicity and trigger the production of autoantibodies, our aim was to expand pathophysiologic knowledge of this distinct phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!