Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In plants, fatty acid and complex lipid synthesis requires the correct spatial and temporal activity of many gene products. Quantitative northern analysis showed that mRNA for the biotin carboxylase subunit of heteromeric acetyl-coenzyme A carboxylase, fatty acid synthase components (3-oxoacyl-acyl carrier protein [ACP] reductase, enoyl-ACP reductase, and acyl-ACP thioesterase), and stearoyl-ACP desaturase accumulate in a coordinate manner during Brassica napus embryogenesis. The mRNAs were present in a constant molar stoichiometric ratio. Transcript abundance of mRNAs for the catalytic proteins was found to be similar, whereas the number of ACP transcripts was approximately 7-fold higher. The peak of mRNA accumulation of all products was between 20 and 29 d after flowering; by 42 d after flowering, the steady-state levels of all transcripts fell to about 5% of their peak levels, which suggests that the mRNAs have similar stability and kinetics of synthesis. Biotin carboxylase was found to accumulate to a maximum of 59 fmol mg(-1) total RNA in embryos, which is in general agreement with the value of 170 fmol mg(-1) determined for Arabidopsis siliques (J.S. Ke, T.N. Wen, B.J. Nikolau, E.S. Wurtele [2000] Plant Physiol 122: 1057-1071). Embryos accumulated between 3- and 15-fold more transcripts per unit total RNA than young leaf tissue; the lower quantity of leaf 3-oxoacyl-ACP reductase mRNA was confirmed by reverse transcriptase-polymerase chain reaction. This is in conflict with analysis of B. napus transcripts using an Arabidopsis microarray (T. Girke, J. Todd, S. Ruuska, J. White, C. Benning, J. Ohlrogge [2000] Plant Physiol 124: 1570-1581) where similar leaf to seed levels of fatty acid synthase component mRNAs were reported.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC155894 | PMC |
http://dx.doi.org/10.1104/pp.010956 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!