A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis. | LitMetric

An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis.

Plant Physiol

Department of Radiation Research for Environment and Resources, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Watanuki-machi 1233, Takasaki, Gunma 370-1292, Japan.

Published: May 2002

An ultraviolet-B (UV-B)-resistant mutant, uvi1 (UV-B insensitive 1), of Arabidopsis was isolated from 1,280 M(1) seeds that had been exposed to ion beam irradiation. The fresh weight of uvi1 under high-UV-B exposure was more than twice that of the wild type. A root-bending assay indicated that root growth was less inhibited by UV-B exposure in uvi1 than in the wild type. When the seedlings were grown under white light, the UV-B dose required for 50% inhibition was about 6 kJ m(-2) for the wild type and 9 kJ m(-2) for uvi1. When the seedlings were irradiated with UV-B in darkness, the dose required for 50% inhibition was about 1.5 kJ m(-2) for the wild type and 4 kJ m(-2) for uvi1. An enzyme-linked immunosorbent assay showed that the reduction in levels of cyclobutane pyrimidine dimers (CPDs) under white light and of (6-4) photoproducts in darkness occurred faster in uvi1 than in the wild type. These results indicate that uvi1 had increased photoreactivation of CPDs and dark repair of (6-4) photoproducts, leading to strong UV-B resistance. Furthermore, the transcript levels of PHR1 (CPD photolyase gene) were much higher in uvi1 than in the wild type both under white light and after UV-B exposure. Placing the plants in the dark before UV-B exposure decreases the early reduction of CPDs in the wild type but not in uvi1. Our results suggest that UVI1 is a negative regulator of two independent DNA repair systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC155871PMC
http://dx.doi.org/10.1104/pp.010894DOI Listing

Publication Analysis

Top Keywords

wild type
28
uv-b exposure
12
uvi1 wild
12
white light
12
uvi1
10
dna repair
8
light uv-b
8
dose required
8
required 50%
8
50% inhibition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!