A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel p53 transcriptional repressor element (p53TRE) and the asymmetrical contribution of two p53 binding sites modulate the response of the placental transforming growth factor-beta promoter to p53. | LitMetric

A novel p53 transcriptional repressor element (p53TRE) and the asymmetrical contribution of two p53 binding sites modulate the response of the placental transforming growth factor-beta promoter to p53.

J Biol Chem

Division of Experimental Therapeutics, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.

Published: July 2002

Previous studies in our laboratory and others identified placental transforming growth factor-beta (PTGF-beta) as an important downstream mediator of DNA damage signaling and a transcriptional target of p53. Here we show that accumulation of PTGF-beta mRNA in response to p53 overexpression is delayed relative to p21(WAF1), whereas the promoters of these genes respond to p53 with similar kinetics. Mutational analyses of two p53 binding sites within the PTGF-beta promoter revealed that site p53-1 (+29 bp) is responsible for as much as 80% of the transcriptional response to p53. This is consistent with electrophoretic mobility shift assays showing that site p53-1 binds p53 with a much higher affinity than site p53-2 (-850 bp). We also describe for the first time a novel 21-bp element (-222 to -242 bp) that acts to down-regulate the PTGF-beta promoter response to p53. Termed the p53 transcriptional repressor element (p53TRE), this sequence was shown to suppress p53 transactivation in a position- and promoter-independent fashion and to associate with a 28-kDa protein expressed in several tumor cell lines. A p53 suppressor element and asymmetric p53 binding sites may participate determining the activation thresholds of p53-responsive promoters in a cell- and context-specific manner.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M203020200DOI Listing

Publication Analysis

Top Keywords

p53
13
p53 binding
12
binding sites
12
response p53
12
p53 transcriptional
8
transcriptional repressor
8
repressor element
8
element p53tre
8
placental transforming
8
transforming growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!