Constitutively activating internal tandem duplication (ITD) and point mutations of the receptor tyrosine kinase FLT3 are present in up to 41% of patients with acute myeloid leukemia (AML). These FLT3/ITD mutations are likely to be important because their presence is associated with a poor prognosis. Both types of mutations appear to activate the tyrosine kinase activity of FLT3. We describe here the identification and characterization of the indolocarbazole derivative CEP-701 as a FLT3 inhibitor. This drug potently and selectively inhibits autophosphorylation of wild-type and constitutively activated mutant FLT3 in vitro in FLT3/ITD-transfected cells and in human FLT3-expressing myeloid leukemia-derived cell lines. We demonstrate that CEP-701 induces a cytotoxic effect on cells in a dose-responsive fashion that parallels the inhibition of FLT3. STAT5 and ERK1/2, downstream targets of FLT3 in the signaling pathway, are inhibited in response to FLT3 inhibition. In primary leukemia blasts from AML patients harboring FLT3/ITD mutations, FLT3 is also inhibited, with an associated cytotoxic response. Finally, using a mouse model of FLT3/ITD leukemia, we demonstrate that the drug inhibits FLT3 phosphorylation in vivo and prolongs survival. These findings form the basis for a planned clinical trial of CEP-701 in patients with AML harboring FLT3- activating mutations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood.v99.11.3885 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Department of Ophthalmology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
Objective: To explore the differential gene expression in peripheral blood immune cells of individuals with type 2 diabetes mellitus (DM), comparing those with and without non-proliferative diabetic retinopathy (NPDR).
Methods: From a pool of 126 potential participants, 60 were selected for detailed analysis. This group included 12 healthy donors (HDs), 22 individuals with DM, and 26 with NPDR.
Heliyon
January 2025
First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China.
Background: The incidence and mortality of lung cancer are high, and treatment with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is the preferred first-line treatment for patients suffering from non-small cell lung cancer (NSCLC) with EGFR mutations. However, EGFR-TKI resistance leads to treatment failure. Yifei-Sanjie pill (YFSJ) is a novel type of Chinese patent medicine for lung cancer.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
Objectives: Asthma, a prevalent chronic disease, poses significant health threats and burdens healthcare systems. This study focused on the role of bronchial epithelial cells in asthma pathophysiology.
Methods: Bioinformatics was used to identify key asthmarelated genes.
Am J Hematol
January 2025
Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Current treatments for persistent or chronic immune thrombocytopenia (ITP) are limited by inadequate response, toxicity, and impaired quality of life. The Bruton tyrosine kinase inhibitor rilzabrutinib was evaluated to further characterize safety and durability of platelet response. LUNA2 Part B is a multicenter, phase 1/2 study in adults with ITP (≥ 3 months duration, platelet count < 30 × 10/L) who failed ≥ 1 ITP therapy (NCT03395210, EudraCT 2017-004012-19).
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Orthodontics, Stomatology School of Jilin University, No. 1500 Qinghua Road, ChaoYang Area, Changchun City, Jilin Province, P.R. China.
Objective: To investigating whether osteogenic differentiation of osteoblasts promoted by tension force (TF) is mediated by ephrinB2-EphB4 signaling.
Methods: TF was applied to MC3T3-E1 cells, then CCK-8 and live/dead staining were used to detect cell proliferation. Levels of osteogenic differentiation-related factors were detected by ALP staining, ARS staining, qPCR and western blot.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!