1. The modulatory effects of mGlu receptors on NMDA-induced potential changes in spinal motoneurones were studied in vitro. 2. Selective activation of mGlu5 receptors by 10 microM (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG; EC(50)=280 +/- 24 microM) did not produce any change in the ventral root potential. However, the same concentration of CHPG (10 min perfusion) significantly attenuated the NMDA-induced ventral root depolarization (VRD). The effect persisted for 10 min after washout. NMDA-induced responses returned to control in 30 min. Brief co-application of CHPG and NMDA did not alter the NMDA-induced response indicating lack of direct receptor interaction. 3. The attenuating effect of CHPG on the NMDA-induced VRD was inhibited by the mGluR5 receptor antagonist, 2-methyl-6-phenyl-ethynylpyridine (MPEP). 4. In the presence of CGP56433A, a GABA(B) receptor antagonist, the NMDA-induced VRD was unchanged. However, NMDA-induced responses were potentiated after 10 min co-application of CHPG and CGP56433A. 5. (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate ((2R,4R)-APDC), a group II mGlu receptor agonist did not attenuate the NMDA-induced response. 6. Under normal physiological conditions group I mGlu receptor agonists activate at least two populations of neurones: (1) GABA-ergic cells, which could release GABA and inhibit dorsal horn neurones, and (2) deep dorsal horn neurones/motoneurones which express NMDA receptors. Therefore, activation of mGlu5 receptors located on GABA-ergic interneurones could influence any direct potentiating interaction between mGlu5 and NMDA receptors in spinal cord and result in depression of the VRD. In the presence of a GABA(B) receptor antagonist, the direct synergistic interaction is unmasked. These data suggest that group I mGlu receptors provide a complex modulation of spinal synaptic processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573338PMC
http://dx.doi.org/10.1038/sj.bjp.0704698DOI Listing

Publication Analysis

Top Keywords

group mglu
16
dorsal horn
12
receptor antagonist
12
receptor agonists
8
spinal cord
8
mglu receptors
8
nmda-induced
8
activation mglu5
8
mglu5 receptors
8
ventral root
8

Similar Publications

Background And Purpose: Metabotropic glutamate receptors (mGlus) are obligate dimer G protein coupled receptors that can all homodimerize and heterodimerize in select combinations. Responses of mGlu heterodimers to selective ligands, including orthosteric agonists and allosteric modulators, are largely unknown.

Experimental Approach: The pharmacological properties of each group II and III mGlu homodimer (except mGlu6) and several heterodimers were examined when stochastically assembled in HEK293T cells, or specifically measured using an improved G protein mediated BRET assay employing complimented fragments of NanoLuciferase.

View Article and Find Full Text PDF

Boosting lithium/magnesium separation performance of selective electrodialysis membranes regulated by enamine reaction.

Water Res

January 2025

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

Monovalent cation exchange membranes (MCEMs) have progressively played an important role in the field of ion separation. However, according to transition state theory (TST), synchronously tuning the enthalpy barrier (△H) and entropy barrier (△S) for cation transport to improve ion separation performance is challenging. Here, the enamine reaction between the -NH- and -CHO groups is applied to regulate the subsequent Schiff-base reaction between the -CHO and -NH groups, which reduces the positive charges of the selective layer but increases the steric hindrance.

View Article and Find Full Text PDF

Replication and extension of the subregion selectivity of glutamate-related changes within the nucleus accumbens associated with the incubation of cocaine-craving.

Pharmacol Biochem Behav

December 2024

Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America. Electronic address:

Cue-elicited drug-seeking behavior intensifies with the passage of time during withdrawal from drug taking and this "incubation of cocaine-craving" involves alterations in nucleus accumbens (NA) glutamate transmission. Here, we employed a combination of in vivo microdialysis and immunoblotting approaches to further examine changes in biochemical indices of glutamate transmission within NA subregions that accompany the incubation of cocaine-craving exhibited by male rats with a 10-day history of 6-h access to intravenous cocaine (0.25 mg/infusion).

View Article and Find Full Text PDF

mGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders.

Pharmacol Rep

December 2024

Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.

Neuroprotection, defined as safeguarding neurons from damage and death by inhibiting diverse pathological mechanisms, continues to be a promising approach for managing a range of central nervous system (CNS) disorders, including acute conditions such as ischemic stroke and traumatic brain injury (TBI) and chronic neurodegenerative diseases like Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). These pathophysiological conditions involve excessive glutamatergic (Glu) transmission activity, which can lead to excitotoxicity. Inhibiting this excessive Glu transmission has been proposed as a potential therapeutic strategy for treating the CNS disorders mentioned.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!