An adipoyl-7-ADCA-producing, recombinant strain of Penicillium chrysogenum was characterized by metabolic network analysis, with special focus on the degradation of adipate and determination of the metabolic fluxes. Degradation of the side-chain precursor, adipate, causes an undesired consumption of adipate in the production of 7-ADCA. Using (13)C-labeled glucose and measurement of metabolite labeling patterns, it was shown that adipate was degraded by beta-oxidation to succinyl-CoA and acetyl-CoA. The labeling analysis indicated that degradation of adipate was taking place in the microbodies and the formed acetyl-CoA was metabolized in the glyoxylate shunt. This hypothesis was further substantiated by an enzyme assay, which showed activity of the key enzyme in the glyoxylate shunt. Flux estimations in two chemostat cultures, one with and one without adipate in the feed, revealed that degradation of adipate replaces the net anaplerotic reaction from pyruvate to oxaloacetate. Thus, with a combination of labeling experiments and enzyme assays, the pathway of adipate degradation was elucidated, and the effect of adipate degradation on the primary metabolism was quantified.

Download full-text PDF

Source
http://dx.doi.org/10.1006/mben.2001.0218DOI Listing

Publication Analysis

Top Keywords

adipate degradation
12
degradation adipate
12
adipate
10
metabolic network
8
network analysis
8
strain penicillium
8
penicillium chrysogenum
8
glyoxylate shunt
8
degradation
7
analysis adipoyl-7-adca-producing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!