Role of p53 in the sensitization of tumor cells to apoptotic cell death.

Mol Immunol

Institut Gustave Roussy, INSERM U.487, 39 Rue Camille Desmoulins, 95805 Villejuif Cedex, France.

Published: May 2002

Immunotherapy of cancer has always represented a very attractive fourth-modality therapeutic approach. Over the past few years, advances in the identification of tumor antigens have opened new perspectives and provided new opportunities for a more accurate immunotherapy of cancer. However, when applied to patients with established tumors, it rarely leads to an objective response. This is in part due to the fact that tumors evade host immunity at both the induction and effector phases. In this regard, several different functional defects in T-lymphocytes that infiltrate cancers have been reported. Indeed, lymphocytes of patients with advanced malignancies are hyporeactive and functionally compromised. Furthermore, it has become clear that immunotherapeutic and gene therapeutic approaches aimed at the induction of anti-tumor cytotoxic responses should consider the resistance of tumor cells to cytotoxic mechanisms. Thus, understanding of tumor escape mechanisms may be the key to a successful immunotherapy for cancer. How tumors escape immunological destruction following the acquisition of resistance to cell death and the potential role the tumor suppressor p53 protein in immunosensitization of tumor cells will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0161-5890(02)00025-1DOI Listing

Publication Analysis

Top Keywords

tumor cells
12
immunotherapy cancer
12
cell death
8
tumor
6
role p53
4
p53 sensitization
4
sensitization tumor
4
cells apoptotic
4
apoptotic cell
4
death immunotherapy
4

Similar Publications

Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.

View Article and Find Full Text PDF

CASP5 associated with PANoptosis promotes tumorigenesis and progression of clear cell renal cell carcinoma.

Cancer Cell Int

January 2025

Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.

Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.

View Article and Find Full Text PDF

Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma.

Eur J Med Res

January 2025

Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.

Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.

Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.

View Article and Find Full Text PDF

SNX30 inhibits lung adenocarcinoma cell proliferation and induces cell ferroptosis through regulating SETDB1.

J Cardiothorac Surg

January 2025

Department of Respiratory and Critical Care Medicine, Datian County General Hospital, 180 Xueshan North Road, Datian County, 366100, China.

Background: Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.

View Article and Find Full Text PDF

Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!