We previously reported that mouse mammary carcinoma cell lines (MMT060562 and BALB/c-MC) induced osteoclast formation through production of prostaglandin E2 (PGE2) in cocultures with mouse bone marrow cells, but the mechanism(s) of PG production remained unclear. In the present in vitro and in vivo studies, we tested the involvement of cyclo-oxygenase-2 (COX-2), an inducible rate-limiting enzyme in PG biosynthesis, in the stimulation of osteoclast formation by mouse mammary carcinoma cell lines. Addition of a selective COX-2 inhibitor, JTE-522, to cocultures of mammary carcinoma cell lines and bone marrow cells lowered PGE2 concentration in the culture media and inhibited osteoclast formation in a dose-dependent manner. Northern blotting showed a very high level of COX-2 messenger RNA (mRNA) expression in MMT060562. The mRNA expression was low in BALB/c-MC, but it increased when BALB/c-MC and bone marrow cells were cocultured. The results of immunocytochemistry for COX-2 protein in respective cultures were compatible with the results of COX-2 mRNA. In vivo, BALB/c-MC injected into the heart of Balb/c mice metastasized to bone and formed osteolytic lesions in their hindlimbs. Histological examination revealed that tumor cells had metastasized to the bone marrow cavity and destroyed the bone trabeculae. Immunohistochemistry demonstrated that bone marrow stromal cells adjacent to tumor cells expressed COX-2 protein. These findings suggest that COX-2 plays an important role in the osteolysis of bone metastasis in vivo as well as in osteoclast formation in cocultures used as an in vitro model of metastatic bone disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/jbmr.2002.17.5.774 | DOI Listing |
Orthop Res Rev
January 2025
R&D, OrthoTreat Ltd, Tel Aviv-Jaffa, Israel.
Bone fractures are a leading cause of morbidity and healthcare expenditure globally. The complex healing process involves inflammation, cartilage formation, mineralization, and bone remodeling. Current treatments like immobilization, surgery, and bone grafting, though effective, pose significant challenges, such as prolonged recovery and high costs.
View Article and Find Full Text PDFLife Med
June 2024
Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China.
Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging.
View Article and Find Full Text PDFInflammation
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China. Electronic address:
The immune-responsive gene 1 (IRG1) protein plays a role in various pathological processes by connecting cellular metabolism to a range of cellular activities through the production of itaconate. Recent studies have highlighted the significance of IRG1 and itaconate in bone metabolism and homeostasis. However, the precise role of IRG1 in osteoporosis remains inadequately documented.
View Article and Find Full Text PDFAdv Ther (Weinh)
January 2025
Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!