Xylitol production by Debaryomyces hansenii NRRL Y-7426 was performed on synthetic medium varying the initial xylose concentration between 50 and 300 g/L. The experimental results of these tests were used to investigate the effect of substrate level on xylose consumption by this yeast. Satisfactory values of product yield on substrate (0.74-0.83 g/g) as well as volumetric productivity (0.481-0.694 g/L x h) were obtained over a wide range of xylose levels (90-200 g/L), while a worsening of kinetic parameters took place at higher concentration, likely due to a substrate inhibition phenomenon. The metabolic behavior of D. hansenii was studied, under these conditions, through a carbon material balance to estimate the fractions of xylose consumed by the cell for different activities (xylitol production, biomass growth, and respiration) during the lag, exponential, and stationary phases.

Download full-text PDF

Source
http://dx.doi.org/10.1385/abab:101:1:15DOI Listing

Publication Analysis

Top Keywords

xylose concentration
8
debaryomyces hansenii
8
carbon material
8
xylitol production
8
starting xylose
4
concentration microaerobic
4
microaerobic metabolism
4
metabolism debaryomyces
4
hansenii carbon
4
material balances
4

Similar Publications

Alcoholysis of High-Solid xylose residue for methyl levulinate preparation and its kinetics.

Bioresour Technol

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China. Electronic address:

Achieving the efficient biomass alcoholysis to methyl levulinate (ML) under high solid content conditions and establishing its kinetic model are crucial, but remain challenging. Here, the alcoholysis of microcrystalline cellulose (MC) and xylose residue (XR) to ML under high solid content conditions using CuSO as a catalyst was reported. High yield (34.

View Article and Find Full Text PDF

This study investigates the production of polyhydroxybutyrate (PHB) using the thermophilic bacterium Caldimonas thermodepolymerans in fed-batch fermentation. This research highlights the potential of thermophilic bacteria in biopolymer production due to their ability to operate at high temperatures, which reduces contamination risks and enhances energy efficiency. Optimal fermentation conditions were identified at a temperature of 50 °C, with the strain achieving a maximum specific growth rate (μ) of 0.

View Article and Find Full Text PDF

Polysaccharides from maggot extracts suppressed colorectal cancer progression by inducing ferroptosis via HMOX1/GPX4 signaling pathway.

Int J Biol Macromol

January 2025

Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China. Electronic address:

Maggots contain various kinds of polysaccharides and recent studies mostly concentrated on their anti-inflammatory functions. While the molecule mechanisms related to the polysaccharides inhibiting carcinogenesis remains unclear. Here we characterized the polysaccharides extracted from maggot (MEs) determining their anti-colon cancer potentials.

View Article and Find Full Text PDF

The development of plant-based meat substitutes is imperative for reducing animal fat intake and promoting dietary diversification. However, the flavor profiles of these products frequently fall short of consumer expectations. This study sought to optimize the production process of meat flavorings for plant-based products using the Taguchi method.

View Article and Find Full Text PDF

This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1-3 times to roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1-choline chloride/xylose (1:2) + 30% water, 2-choline chloride/glucose (1:2) + 30% water, 3-choline chloride/ethylene glycol (1:2), and 4-tap water (EC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!