In response to lingering concerns about the utility of dynamometer data for mobile source emissions modeling, the U.S. Environmental Protection Agency (EPA) has constructed an on-road test facility to characterize the real-world emissions of heavy-duty trucks. The facility was designed to effectively demonstrate the full range of vehicle operation and to measure the emissions produced. Since it began operation, the facility has been continuously upgraded to incorporate state-of-the-art technology. Its potential uses include collecting modal emissions data, validating dynamometer test parameters and results, and demonstrating new emission control technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10473289.2002.10470797 | DOI Listing |
Environ Sci Technol
January 2025
Saudi Aramco, Dhahran 31311, Saudi Arabia.
Amid ambitious net-zero goals and growing demands for freight logistics, addressing the climate challenges posed by the heavy-duty truck (HDT) sector is an urgent and pivotal task. This study develops an integrated HDT model by incorporating vehicle dynamic simulation and life cycle analysis to quantify energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership associated with three emerging powertrain technologies in various truck use scenarios in China, including battery electric, fuel cell electric, and hydrogen combustion engine trucks. The results reveal varying levels of economic suitability for these powertrain alternatives depending on required driving ranges and duty cycles: the battery electric for regional-haul applications, the hydrogen fuel cell for longer-haul and low-load driving conditions, and the hydrogen combustion engine to meet high power requirements.
View Article and Find Full Text PDFEnergy Fuels
January 2025
Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.
The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Packaging, Michigan State University, East Lansing, MI 48824, USA.
Environ Sci Technol
January 2025
Argonne National Laboratory, Lemont, Illinois 60439, United States.
The electrification of the transport sector is crucial for reducing greenhouse gas emissions and the reliance on fossil fuels. Battery electric vehicles (BEVs) depend on critical materials (CMs) for their batteries and electronic components, yet their widespread adoption may face constraints due to the limited availability of CMs. This study assesses the implications of vehicle electrification and lightweighting (material substitution) on the U.
View Article and Find Full Text PDFEnergy Clim Chang
December 2024
South China University of Technology, School of Future Technology, 777 Xingye Ave East, Panyu District, Guangzhou, Guangdong, 511442, China.
Hydrogen can be used as an energy carrier and chemical feedstock to reduce greenhouse gas emissions, especially in difficult-to-decarbonize markets such as medium- and heavy-duty vehicles, aviation and maritime, iron and steel, and the production of fuels and chemicals. Significant literature has been accumulated on engineering-based assessments of various hydrogen technologies, and real-world projects are validating technology performance at larger scales and for low-carbon supply chains. While energy system models continue to be updated to track this progress, many are currently limited in their representation of hydrogen, and as a group they tend to generate highly variable results under decarbonization constraints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!