In this paper we report the isolation and characterization of an anaerobic enrichment culture as well as of a Rhodococcus sp. strain 2 capable of degrading 3,4-dihaloanilines under nitrate reducing conditions. Using mass spectrometry several of the intermediates formed in the process of 3,4-dichloroaniline conversion were identified. Most interesting is the observation of reductive deamination and the formation of 1,2-dichlorobenzene as one of the intermediates. Using 19F NMR and fluorinated 3,4-dihaloaniline model substrates it was corroborated that reductive deamination of the anilines to give dihalobenzene intermediates represents a new initial step in the anaerobic microbial degradation of these halogenated anilines.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2002.tb11149.xDOI Listing

Publication Analysis

Top Keywords

reductive deamination
12
step anaerobic
8
anaerobic microbial
8
microbial degradation
8
degradation halogenated
8
halogenated anilines
8
deamination step
4
anilines paper
4
paper report
4
report isolation
4

Similar Publications

Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The -phosphinic group, with hydrogen-phosphorus-carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino--phosphinic acids undergo substrate-like enzymatic transformations, leading to new biologically active metabolites.

View Article and Find Full Text PDF

Nickel-Catalyzed Reductive Hydrolysis of Nitriles to Alcohols.

Angew Chem Int Ed Engl

December 2024

Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.

Article Synopsis
  • Nitriles are important compounds used to create various chemicals like pharmaceuticals and agrochemicals.
  • The study presents a nickel-catalyzed method for converting nitriles to alcohols using molecular hydrogen, involving a sequence of reactions.
  • This method is efficient for different types of nitriles and can be applied to complex drug molecules, producing alcohols that are crucial in many fields such as organic synthesis and energy technology.
View Article and Find Full Text PDF

Gallic acid attenuates lipopolysaccharide - induced memory deficits, neurochemical changes, and peripheral alterations in purinergic signaling.

Metab Brain Dis

November 2024

Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil.

Neuroinflammation is associated with many neurological disorders. Gallic acid (GA) has attracted significant attention due to its biological properties, such as neuroprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the effects of GA in memory, TNF-α levels, oxidative stress, and activities of acetylcholinesterase (AChE), Na, K-ATPase and Ca-ATPase in the brain of mice exposed to lipopolysaccharide (LPS).

View Article and Find Full Text PDF

The selective cross-coupling of two alkyl electrophiles to construct complex molecules remains a challenge in organic synthesis. Known reactions are optimized for specific electrophiles and are not amenable to interchangeably varying electrophilic substrates that are sourced from common alkyl building blocks, such as amines, carboxylic acids and halides. These limitations restrict the types of alkyl substrate that can be modified and, ultimately, the chemical space that can be explored.

View Article and Find Full Text PDF

During the deamination and amination processes of meso-diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum (StDAPDH), residue R71 was observed to display distinct functions. H154 has been proposed as a basic residue that facilitates water molecules to attack the D-chiral carbon of meso-DAP during deamination. Inspired by the phenomenon of R71, the effects of H154 during deamination and amination were investigated in this study with the goal of enhancing the amination activities of StDAPDH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!