The reduced folate carrier (RFC1), a member of the major facilitative superfamily, generates uphill transport of folates into cells through an exchange mechanism with intracellular organic anions. RFC1 has twelve transmembrane domains with N- and C-termini, and the long loop connecting the 6th and 7th transmembrane domains, directed to the cytoplasm. To elucidate the role of the C-terminus and the long cytoplasmic loop in carrier function, mutants with deletion of the entire C-terminus or with progressive deletions of the loop region were constructed and stably transfected into the murine MTX(r)A cell line, which lacks functional RFC1. While expression of the C-terminus-deleted RFC1 protein could not be detected in the cell lysate, the RFC1 mutant lacking 57 of 66 amino acid residues of the long cytoplasmic loop appeared to be inserted into the cytoplasmic membrane but was not functional. In cell lines in which 17 or 31 amino acids were deleted from the carboxyl half of the loop, there was partial preservation of methotrexate, 5-formyltetrahydrofolate, and 5-methyltetrahydrofolate transport. The loss of 5-formyltetrahydrofolate transport activity in the delta31 and delta17 mutants was due primarily to a decrease in substrate binding to the carrier. Mutants with partially truncated internal loops demonstrated an anion responsiveness similar to that of wild-type RFC1, indicating that this region of the carrier does not contain a site(s) that plays a role in anion exchange. This is the first study to describe the important role of the long cytoplasmic loop in substrate binding and the crucial role of the C-terminus in maintaining stability of RFC1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(02)00955-3DOI Listing

Publication Analysis

Top Keywords

long cytoplasmic
16
cytoplasmic loop
16
role c-terminus
12
c-terminus long
8
reduced folate
8
folate carrier
8
transmembrane domains
8
substrate binding
8
loop
7
rfc1
7

Similar Publications

Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.

View Article and Find Full Text PDF

Solid tumors (particularly the desmoplastic ones) usually harbor insurmountable mechanical barriers and formidable immunosuppressive tumor microenvironment (TME), which severely restricted nanomedicine-penetration and vastly crippled outcomes of numerous therapies. To overcome these barriers, a versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy was developed here to simultaneously modulate tumor physical barriers and remodel TME for synergistically enhancing anticancer efficiency. Dexamethasone (DMS) and cis-aconityl-doxorubicin (CAD) were co-hitchhiked into phenylboronic acid functionalized polyethylenimine (PEI-PBA) carrier, and further in situ shielded by aldehyde-modified polyethylene glycol (PEG) to form CAD/DMS@PEG/PEI-PBA (CD@PB) nanoparticles (NPs).

View Article and Find Full Text PDF

Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin.

View Article and Find Full Text PDF

Cytoplasmic male sterility (CMS) originates from a mito-nuclear conflict where mitochondrial genes induce male sterility and nuclear genes restore male fertility in hermaphrodites. The first observation of CMS in animals was reported recently in the freshwater snail where it is associated with two extremes divergent mitotypes D and K. The D individuals are male-steriles while male fertility is restored by nuclear genes in K and are found mixed with the most common male-fertile N mitotype in natural populations (i.

View Article and Find Full Text PDF

Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction.

Hum Mol Genet

January 2025

Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China.

Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!