The MYST domain acetyltransferase Chameau functions in epigenetic mechanisms of transcriptional repression.

Curr Biol

Laboratoire de Génétique et Physiologie du Développement, Institut de Biologie du Développement de Marseille, CNRS/INSERM/Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 9, France.

Published: April 2002

Reversible acetylation of histone tails plays an important role in chromatin remodelling and regulation of gene activity. While modification by histone acetyltransferase (HAT) is usually linked to transcriptional activation, we provide here evidence for HAT function in several types of epigenetic repression. Chameau (Chm), a new Drosophila member of the MYST HAT family, dominantly suppresses position effect variegation (PEV), is required for the maintenance of Hox gene silencing by Polycomb group (PcG) proteins, and can partially substitute for the MYST Sas2 HAT in yeast telomeric position effect (TPE). Finally, we provide in vivo evidence that the acetyltransferase activity of Chm is required in these processes, since a variant protein mutated in the catalytic domain no longer rescues PEV modification, telomeric silencing of SAS2-deficient yeast cells, nor lethality of chm mutant flies. These findings emphasize the role of an acetyltransferase in gene silencing, which supports, according to the histone code hypothesis, that transcription at a particular locus is determined by a precise combination of histone tail modifications rather than by overall acetylation levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-9822(02)00814-xDOI Listing

Publication Analysis

Top Keywords

gene silencing
8
myst domain
4
acetyltransferase
4
domain acetyltransferase
4
acetyltransferase chameau
4
chameau functions
4
functions epigenetic
4
epigenetic mechanisms
4
mechanisms transcriptional
4
transcriptional repression
4

Similar Publications

Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.

Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.

View Article and Find Full Text PDF

NSD2 mediated H3K36me2 promotes pulmonary arterial hypertension by recruiting FOLR1 and metabolism reprogramming.

Cell Signal

January 2025

Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. Electronic address:

Pulmonary artery hypertension (PAH) is characterized by a cancer-like metabolic shift towards aerobic glycolysis. Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone methyltransferase, has been implicated in PAH, yet its precise role remains unclear. In this study, we induced PAH in C57BL/6 mice using monocrotaline (MCT) and observed increased FOLR1 expression in PAH tissues, which was suppressed by NSD2 knockdown.

View Article and Find Full Text PDF

Clinical advances of mRNA vaccines for cancer immunotherapy.

Med

January 2025

Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

The development of mRNA vaccines represents a significant advancement in cancer treatment, with more than 120 clinical trials to date demonstrating their potential across various malignancies, including lung, breast, prostate, melanoma, and more challenging cancers such as pancreatic and brain tumors. These vaccines work by encoding tumor-specific antigens and immune-stimulating molecules, effectively activating the immune system to target and eliminate cancer cells. Despite these promising advancements, significant challenges remain, particularly in achieving efficient delivery and precise regulation of the immune response.

View Article and Find Full Text PDF

The Multidrug and toxin compound extrusion gene GhTT12 promotes the accumulation of both proanthocyanidins and anthocyanins in Gossypium hirsutum.

Plant Physiol Biochem

January 2025

Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:

The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!