Novel thermoreversible gelation behavior of aqueous solutions of ABA-type triblock copolymers composed of the central polyethylene oxide (PEG) block and two poly(D,L-lactic acid-co-glycolic acid) side blocks was found. Phase transition characteristics, such as critical gel concentration (CGC) and lower and upper critical gel temperature (CGT), are closely related to the molecular structure of the triblock copolymers. The CGC and the lower CGT both increases with increasing PEG/PLGA molecular weight ratio. Increasing the GA content in PLGA block induces a somewhat higher CGC. The copolymer forms micelles with a PLGA loop core and a PEG shell in water. Also grouped micelles are identified seemingly due to the bridging of two micelles sharing two PLGA blocks of a block copolymer chain. As the temperature increases the association of micelles increases, which results in gelation. The ABA-type copolymers exhibit a relatively low CGC (<10%) and low sol-gel transition temperatures compared to BAB-type copolymers. As the temperature increases further gel-sol transition is observed, which would result from the shrinkage of micelles with temperature increase. The hydrodynamic size of the micelles is monitored by dynamic laser scattering, and a possible gelation mechanism was suggested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.10164 | DOI Listing |
Pharm Dev Technol
December 2024
Brilliant Grammar School Educational Society's Group of Institutions - Integrated Campus (Faculty of Engineering and Faculty of Pharmacy), Hyderabad, Telangana, India.
The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Insulin therapy is essential for regulating blood sugar levels. Conventional subcutaneous injection is prone to psychological stress, local tissue damage and severe blood glucose fluctuations, and thus the development of oral insulin technology has become an alternative therapy. However, oral insulin faces challenges such as difficult absorption, poor adhesion, low bioavailability, and short duration of action, due to the large molecular weight, low permeability, and easily degradable by enzymes and gastric acids.
View Article and Find Full Text PDFHeliyon
November 2024
Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Osteomyelitis caused by drug-resistant pathogens is one of the most important medical challenges due to high rates of mortality and morbidity, and limited therapeutical options. The application of novel nano-scaffolds loaded with antibiotics has widely been studied and extensively evaluated for and inhibition of pathogens, regenerating damaged bone tissue, and increasing bone cell proliferation. The treatment of bone infections using the local osteogenic scaffolds loaded with antimicrobial agents may efficiently overcome the problems of the systemic use of antimicrobial agents and provide a controlled release and sufficient local levels of antibiotics in the infected sites.
View Article and Find Full Text PDFScaffold-based tissue engineering provides an efficient approach for repairing uterine tissue defects and restoring fertility. In the current study, a novel trilayer tissue engineering scaffold with high similarity to the uterine tissue in structure was designed and fabricated via 4D printing, electrospinning and 3D bioprinting for uterine regeneration. Highly stretchable poly(l-lactide--trimethylene carbonate) (PLLA--TMC, "PTMC" in short)/thermoplastic polyurethane (TPU) polymer blend scaffolds were firstly made via 4D printing.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!