Lysophosphatidylcholine (lysoPC) acts on vascular smooth muscle cells (VSMCs) to produce a mitogenic response through the activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In the present study, we examined the importance of reactive oxygen species (ROS) in lysoPC-stimulated ERK1/2 activation in cultured rat VSMCs. Treatment with lysoPC for 3 minutes caused a 2-fold increase in intracellular ROS that was blocked by the NADH/NADPH oxidase inhibitor, diphenylene iodonium (DPI). Antioxidants, N-acetyl-L-cysteine, glutathione monoester, or alpha -tocopherol, inhibited ERK1/2 activation by lysoPC. Almost identical results were obtained in the VSMC line A10. Pretreatment of VSMCs with DPI but not allopurinol or potassium cyanide (KCN) abrogated the activation of ERK1/2. The Flag-tagged p47phox expressed in A10 cells was translocated from the cytosol to the membrane after 2 minutes of stimulation with lysoPC. The overexpression of dominant-negative p47phox in A10 cells suppressed lysoPC-induced ERK activation. The ROS-dependent ERK activation by lysoPC seems to involve protein kinase C- and Ras-dependent raf-1 activation. Induction of c-fos expression and enhanced AP-1 binding activity by lysoPC were also inhibited by DPI and NAC. Taken together, these data suggest that ROS generated by NADH/NADPH oxidase contribute to lysoPC-induced activation of ERK1/2 and subsequent growth promotion in VSMCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.atv.0000015903.02749.71 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!