Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
At extreme altitude, air has an almost identical composition compared to air at sea level, while its pressure is altitude-dependently lower. When supplementary oxygen is used to achieve an acceptable inspiratory pressure of oxygen (PI(O2)) during climbing, the barometric pressure difference to lower altitudes is not compensated for. In this report, we tried theoretically to apply pressure support ventilation (PSV) to partially compensate for low barometric pressures. PSV is widely used for respiratory home care and is applicable via a nasal mask. Since there are light-weight units with long battery lives on the market, we speculated that these units may to some extent replace bottled oxygen. PSV was in theory applied at barometric pressures of 400 torr (Everest Base Camp), 284 torr (South Col), and 253 torr (summit of Mt. Everest). We found that during PSV at a mean airway pressure of 16.5 torr on the summit of Mt. Everest, a fraction of inspired oxygen (FI(O2)) of 0.34 sufficed to achieve an alveolar partial pressure (PA(O2)) of 67 torr. PSV increases PI(O2) by 3.5 torr, which in theory elevates the maximum oxygen consumption (V(O2max)) by 218 mL.min(-1) in an acclimatized climber in this setting. An additional benefit of PSV at extreme altitude may come from the unloading of the respiratory muscles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/152702902753639568 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!