We produced aggregate chimeric embryos between blastomeres from the somatic cell nuclear transfer (SCNT) embryos and blastomeres from normal embryos. The SCNT embryos were produced by fusing enucleated oocytes with GFP gene introduced fibroblast cells, which were derived from a day 16 fetus. GFP gene-introduced fibroblast cells were cultured and passaged four to 12 times over a period of 45-79 days before SCNT. After transferring them into pseudopregnant recipient rabbits, the 15-day postcoitus fetuses were collected. We examined the existence of the cells derived from SCNT embryos in the fetus stage of pregnancy to detect the GFP gene. Fetuses that were not collected continued to develop into newborn rabbits. Two hundred and thirty-six chimeric embryos were produced using 39 SCNT morula stage embryos, and these embryos were transferred to 11 recipient rabbits. As a result, 27 normally developed and 16 degenerated concepti were obtained. The GFP gene-positive signals were detected in one of the fetuses, two of the placentae, and two of the degenerated concepti. In this study, we found that the rabbit SCNT embryos have the ability to develop and differentiate in vivo. We also demonstrated a novel method of producing a transgenic rabbit using SCNT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/153623002753632002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!