Dynamic separation of chaotic signals in the presence of noise.

Phys Rev E Stat Nonlin Soft Matter Phys

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Mokhovaya Street 11, GSP-3, Moscow 103907, Russia.

Published: April 2002

The problem of separation of a noise-contaminated observed sum of chaotic signals into the individual components is considered. A noise threshold is found above which high-quality separation is impossible. Below the threshold, each signal is recovered with any prescribed accuracy with a separation method. The threshold effect is shown to be associated with the information content of chaotic signals and a theoretical estimate is given for the threshold.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.65.046220DOI Listing

Publication Analysis

Top Keywords

chaotic signals
12
dynamic separation
4
separation chaotic
4
signals presence
4
presence noise
4
noise problem
4
problem separation
4
separation noise-contaminated
4
noise-contaminated observed
4
observed sum
4

Similar Publications

Acoustic frequency comb generation on a composite diamond/silicon microcantilever in ambient air.

Microsyst Nanoeng

January 2025

Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Shandong, 250100, P. R. China.

Acoustic frequency combs (AFCs) contain equidistant coherent signals with unconventional possibilities on metrology. Previously, implementation of AFCs on mechanical microresonators with large air damping loss is difficult, which restricted their atmospheric applications. In this work, we explore the potentials of a composite diamond/silicon microcantilever for parametric generation of AFCs in ambient air.

View Article and Find Full Text PDF

A high security physical layer encryption scheme for dual-mode orthogonal frequency division multiplexing with index modulation (DM-OFDM-IM) in magnetic induction communication is proposed. The scheme utilizes DM-OFDM-IM, where subcarriers within each subblock are divided into two groups, each modulated by distinct signal constellations. DM-OFDM-IM leverages the sequential information from the modulated constellation to transmit extra information, leading to a substantial enhancement in spectral efficiency.

View Article and Find Full Text PDF

Introduction: Vocal distortion, also known as a scream or growl, is used worldwide as an essential technique in singing, especially in rock and metal, and as an ethnic voice in Mongolian singing. However, the production mechanism of vocal distortion is not yet clearly understood owing to limited research on the behavior of the larynx, which is the source of the distorted voice.

Objectives: This study used high-speed digital imaging (HSDI) to observe the larynx of professional singers with exceptional singing skills and determine the laryngeal dynamics in the voice production of various vocal distortions.

View Article and Find Full Text PDF

We examine the impact of the time delay on two coupled massive oscillators within the second-order Kuramoto model, which is relevant to the operations of real-world networks that rely on signal transmission speed constraints. Our analytical and numerical exploration shows that time delay can cause multi-stability within phase-locked solutions, and the stability of these solutions decreases as the inertia increases. In addition to phase-locked solutions, we discovered non-phase-locked solutions that exhibit periodic and chaotic behaviors, depending on the amount of inertia and time delay.

View Article and Find Full Text PDF

The motivation for this article stems from the fact that medical image security is crucial for maintaining patient confidentiality and protecting against unauthorized access or manipulation. This paper presents a novel encryption technique that integrates the Deep Convolutional Generative Adversarial Networks (DCGAN) and Virtual Planet Domain (VPD) approach to enhance the protection of medical images. The method uses a Deep Learning (DL) framework to generate a decoy image, which forms the basis for generating encryption keys using a timestamp, nonce, and 1-D Exponential Chebyshev map (1-DEC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!