A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phase ordering with a global conservation law: Ostwald ripening and coalescence. | LitMetric

Phase ordering with a global conservation law: Ostwald ripening and coalescence.

Phys Rev E Stat Nonlin Soft Matter Phys

Dipartimento di Matematica e Fisica, Università di Camerino, and Istituto Nazionale di Fisica della Materia, 62032 Camerino, Italy.

Published: April 2002

Globally conserved phase ordering dynamics is investigated in systems with short range correlations at t=0. A Ginzburg-Landau equation with a global conservation law is employed as the phase field model. The conditions are found under which the sharp-interface limit of this equation is reducible to the area-preserving motion by curvature. Numerical simulations show that, for both critical and off-critical quench, the equal-time pair correlation function exhibits dynamic scaling, and the characteristic coarsening length obeys l(t) approximately t(1/2). For the critical quench, our results are in excellent agreement with earlier results. For off-critical quench (Ostwald ripening) we investigate the dynamics of the size distribution function of the minority phase domains. The simulations show that, at large times, this distribution function has a self-similar form with growth exponent 1/2. The scaled distribution, however, strongly differs from the classical Wagner distribution. We attribute this difference to coalescence of domains. A theory of Ostwald ripening is developed that takes into account binary coalescence events. The theoretical scaled distribution function agrees well with that obtained in the simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.65.046117DOI Listing

Publication Analysis

Top Keywords

ostwald ripening
12
distribution function
12
phase ordering
8
global conservation
8
conservation law
8
off-critical quench
8
scaled distribution
8
distribution
5
phase
4
ordering global
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!