Quantum tunneling of Bose-Einstein condensates in optical lattices under gravity.

Phys Rev Lett

Bartol Research Institute, University of Delaware, Newark, Delaware 19716, USA.

Published: April 2002

We investigate the quantum tunneling of Bose-Einstein condensates in optical lattices under gravity in the "Wannier-Stark localization" regime and "Landau-Zener tunneling" regime. Our results agree with experimental data [B. P. Anderson et al., Science 282, 1686 (1998); F. S. Cataliotti et al., Science 293, 843 (2001)]. We obtain the total decay rate which is valid over the entire range of temperatures, and show how it reduces to the appropriate results for the classical thermal activation at high temperatures, the thermally assisted tunneling at intermediate temperatures, and the pure quantum tunneling at low temperatures. We design an experimental protocol to observe this new phenomenon in further experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.88.170408DOI Listing

Publication Analysis

Top Keywords

quantum tunneling
12
tunneling bose-einstein
8
bose-einstein condensates
8
condensates optical
8
optical lattices
8
lattices gravity
8
gravity investigate
4
investigate quantum
4
gravity "wannier-stark
4
"wannier-stark localization"
4

Similar Publications

We compare the optical properties of four diode samples differing by built-in field direction and width of the InGaN quantum well in the active layer: two diodes with standard layer sequences and 2.6 and 15 nm well widths and two diodes with inverted layer ordering (due to the tunnel junction grown before the structure) also with 2.6 and 15 nm widths.

View Article and Find Full Text PDF

In Situ, Treatment with Guanidinium Chloride Ligand Enables Efficient Blue Quantum Dot Light-Emitting Diodes with 23.5% External Quantum Efficiency.

Adv Mater

January 2025

National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China.

The poor efficiency and stability of blue Quantum Dot Light-Emitting diodes (QLED) hinders the practical applications of QLEDs full-color displays. Excessive electron injection, insufficient hole injection, and abundant defects on the surface of quantum dots (QD) are the main issues limiting the performance of blue devices. Herein, an in situ treatment with bipolar small molecule polydentate ligand-guanidine chloride (GACl) is proposed to simultaneously suppress excessive electron injection, patch surface defects of QDs and enhance hole injection.

View Article and Find Full Text PDF

Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.

View Article and Find Full Text PDF

Identifying the Structure of Two-Dimensional ACuO (A = Na, K, Cs) Film on Cu(111) with Atomic Resolution.

J Phys Chem Lett

January 2025

College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China.

The deposition of alkali metals on oxide surfaces has garnered significant interest due to their critical role in enhancing various catalytic processes. However, the atomic-scale characterization of these structures remains elusive, owing to the complex and competing interactions among the oxygen, the alkali metals, and the metal atoms within the oxides. In this work, we grew alkali metals (Na, K, Cs) on the copper oxide films on the Cu(111) surface and found the formation of hexagonally ordered monolayer films.

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!