The stopping power for antiprotons in various solid targets has been measured in the low-energy range of 1-100 keV. In agreement with most models, in particular free-electron gas models, the stopping power is found to be proportional to the projectile velocity below the stopping-power maximum. Although a stopping power proportional to velocity has also been observed for protons, the interpretation of such measurements is difficult due to the presence of charge exchange processes. Hence, the present measurements constitute the first unambiguous support for a velocity-proportional stopping power due to target excitations by a pointlike projectile.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.88.193201DOI Listing

Publication Analysis

Top Keywords

stopping power
20
velocity-proportional stopping
8
power proportional
8
stopping
5
power
5
antiproton stopping
4
stopping low
4
low energies
4
energies confirmation
4
confirmation velocity-proportional
4

Similar Publications

Background: For patients with small-size colorectal liver metastases, growing evidence suggests thermal ablation to be associated with fewer adverse events and faster recovery than resection while also challenging resection in terms of local control and overall survival. This study assessed the potential non-inferiority of thermal ablation compared with surgical resection in patients with small-size resectable colorectal liver metastases.

Methods: Adult patients (aged ≥18 years) from 14 centres in the Netherlands, Belgium, and Italy with ten or fewer small-size (≤3 cm) colorectal liver metastases, no extrahepatic metastases, and an Eastern Cooperative Oncology Group performance status of 0-2, were stratified per centre, and according to their disease burden, into low, intermediate, and high disease burden subgroups and randomly assigned 1:1 to receive either thermal ablation (experimental group) or surgical resection (control group) of all target colorectal liver metastases using the web-based module Castor electronic data capture with variable block sizes of 4, 6, and 8.

View Article and Find Full Text PDF

Objective: To determine survival and neurodevelopmental outcomes in the Hypotension in Preterm (HIP) trial.

Design: Prospective follow-up of infants enrolled in randomised controlled trial.

Participants: 58 infants born before 28 weeks of gestation with low mean arterial blood pressure.

View Article and Find Full Text PDF

Group sequential design using restricted mean survival time as the primary endpoint in clinical trials.

Stat Methods Med Res

January 2025

Department of Biostatistics, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China.

The proportional hazards (PH) assumption is often violated in clinical trials. If the most commonly used Log-rank test is used for trial design in non-proportional hazard (NPH) cases, it will result in power loss or inflation, and the effect measures hazard ratio will become difficult to interpret. To circumvent the issue caused by the NPH for trial design and to make the effect measures easy to interpret and communicate, two simulation-free methods about restricted mean survival time group sequential (GS-RMST) design are introduced in this study: the independent increment GS-RMST (GS-RMSTi) design and the non-independent increment GS-RMST (GS-RMSTn) design.

View Article and Find Full Text PDF

Accurate dose predictions are crucial to maximizing the benefits of carbon-ion therapy. Carbon beams incident on the human body cause nuclear interactions with tissues, resulting in changes in the constituent nuclides and leading to dose errors that are conventionally corrected using conventional single-energy computed tomography (SECT). Dual-energy computed tomography (DECT) has frequently been used for stopping power estimation in particle therapy and is well suited for correcting nuclear reactions because of its detailed body-tissue elemental information.

View Article and Find Full Text PDF

Objective: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.

Study Design: Prospective, double-blinded, observational study of fall risk scores between trained observers and those of IMU-HAs.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!