We present charged-particle multiplicities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at square root[s(NN)] = 200 GeV. For the 5% most central events we obtain dN(ch)/deta/(eta = 0) = 625+/-55 and N(ch)/(-4.7< or =eta < or =4.7) = 4630 +/- 370, i.e., 14% and 21% increases, respectively, relative to square root[s(NN)] = 130 GeV collisions. Charged-particle production per pair of participant nucleons is found to increase from peripheral to central collisions around midrapidity. These results constrain current models of particle production at the highest RHIC energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.88.202301 | DOI Listing |
Med Sci Sports Exerc
October 2024
School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH.
Purpose: Motion capture technology is quickly evolving providing researchers, clinicians, and coaches with more access to biomechanics data. Markerless motion capture and inertial measurement units (IMUs) are continually developing biomechanics tools that need validation for dynamic movements before widespread use in applied settings. This study evaluated the validity of a markerless motion capture, IMU, and red, green, blue, and depth (RGBD) camera system as compared to marker-based motion capture during countermovement jumps, overhead squats, lunges, and runs with cuts.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
Visible and Near-infrared hyperspectral imaging (VNIR-HSI) combined with machine learning has shown its effectiveness in various detection applications. Specifically, the quality of cigar tobacco leaves undergoes subtle changes due to environmental differences during the air-curing phase. This study aims to evaluate the feasibility of deep learning methods in overcoming data limitations to develop a VNIR-HSI prediction model for the quality of cigar tobacco leaves at different air-curing levels.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Evaluating compost maturity, e.g. via manual seed germination index (GI) measurement, is both time-consuming and costly during composting.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.
View Article and Find Full Text PDFJ Food Sci
December 2024
College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China.
As consumers increasingly prioritize food safety and nutritional value, the dairy industry faces a pressing need for rapid and accurate methods to detect essential nutritional components in milk, such as fat, protein, and lactose. Hyperspectral imaging (HSI) technology, known for its non-destructive, fast, and precise nature, shows great promise in food quality assessment. However, the high dimensionality of HSI data poses challenges for effective band selection and model optimization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!