A new method specifically designed to expose cells isolated in vitro to radon and its decay products.

Radiat Res

CEA, DSV, DRR, LCE, 60-68 Avenue du Général Leclerc, 92265 Fontenay-aux-Roses cedex, France.

Published: June 2002

A system was set up to provide direct exposure of cells cultured in vitro to radon and its decay products. Radon gas emanating from a uranium source was introduced at a measured concentration in a closed 10-m(3) exposure chamber. Cells were cultured on the microporous membrane of an insert that was floating over the culture medium in a six-well cluster plate. Plates with cells were placed in an open thermoregulated bath within the chamber. Under these conditions, cells were irradiated by direct deposition of radon and radon decay products. During exposure, all parameters, including radon gas concentrations, decay product activities, and potential alpha-particle energy concentrations, were determined by periodic air-grab samplings inside the chamber. The energy spectrum of deposited decay products was characterized. An estimation of alpha-particle flux density on the area containing cells was performed using CR-39 detector films that were exposed in cell-free wells during the cell exposure. The number of alpha-particle traversals per cell was deduced both from the mean number of CR-39 tracks per surface unit and from measurements of entire cells or nuclear surfaces. This paper describes the design of experiment, the dosimetry of radon and radon decay product, and the procedures for aerosol measurements. Our preliminary data show the usefulness of the in vitro cell culture approach to the study of the early cellular effects of radon and its decay products.

Download full-text PDF

Source
http://dx.doi.org/10.1667/0033-7587(2002)157[0693:anmsdt]2.0.co;2DOI Listing

Publication Analysis

Top Keywords

radon decay
20
decay products
20
radon
9
vitro radon
8
cells cultured
8
radon gas
8
radon radon
8
decay product
8
cells
7
decay
7

Similar Publications

Identifying Predictors of Spatiotemporal Variations in Residential Radon Concentrations across North Carolina Using Machine Learning Analytics.

Environ Pollut

January 2025

Department of Population Health Sciences, Duke University, Durham, NC 27708, United States; Duke Cancer Institute, Duke University, Durham, NC 27708, United States.

Radon is a naturally occurring radioactive gas derived from the decay of uranium in the Earth's crust. Radon exposure is the leading cause of lung cancer among non-smokers in the US. Radon infiltrates homes through soil and building foundations.

View Article and Find Full Text PDF

A soil-vegetation-atmospheric transfer (SVAT) model for radon and its progeny is presented to improve process-level understanding of the role of forests in taking-up radionuclides from soil radon outgassing. A dynamic system of differential equations couples soil, tree (Scots pine) and atmospheric processes, treating the trees as sources, sinks and conduits between the atmosphere and the soil. The model's compartments include a dual-layer soil column undergoing hydrological and solute transport, the tree system (comprising roots, wood, litter, and foliage) and the atmosphere, with physical processes governing the transfers of water and radon products between these compartments.

View Article and Find Full Text PDF
Article Synopsis
  • The study assesses radon and thoron exhalation rates using a closed-loop technique with online radon monitors, particularly focusing on the balance of air volume in the sample and detector chambers.
  • An alternative model is proposed that treats the sample and detector chambers as separate entities, refining the mass balance equation to account for air flow rates affecting radon/thoron concentrations.
  • Results indicate that while lower flow rates don't affect long-lived radon buildup, experiments showed that increasing flow rates impacts the effective removal rate of radon, suggesting potential issues with thoron interference at lower flows.
View Article and Find Full Text PDF

Exposure to radon and ambient particle radioactivity during pregnancy and adverse maternal, fetal and perinatal outcomes: The current literature and potential mechanisms.

Environ Res

December 2024

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA. Electronic address:

Radon is a colorless, odorless radioactive gas that is naturally occurring in the environment, originating from the decay of uranium that exists in the earth's crust. In addition to lung cancer, radon exposure has recently been associated with hypertension and cardiovascular disease. However, little consideration has been given to radon exposure during pregnancy, even though pregnant people are a more vulnerable population and ionizing radiation is a known risk factor for adverse maternal and fetal outcomes.

View Article and Find Full Text PDF

The very (radio)active life of Pierre C.C.

Int J Radiat Biol

November 2024

Groupe Permanent des experts Radioprotection de l'ASN (French Nuclear Security Authority), rue Jean Lantier, Paris.

Purpose: In this short tale, we describe a year of Pierre Chris Curry's ionizing radiation (IR) exposure, assessing and summarizing how much he has been exposed to over a year of his fictive life, cumulating the different types of exposures (either due to natural radiation, occupational and medical exposure), while staying reasonably credible. We have limited ourselves to IR exposure. As a recognized specialist in interventional cardiac surgery, Pierre provides lectures at international conferences requiring overseas flights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!