The process of development of various cell types is often based on a linear or deterministic paradigm. This is true, for example, for osteoblast development, a process that occurs through the differentiation of a subset of primitive fibroblast progenitors called colony-forming unit-osteoblasts (CFU-Os). CFU-O differentiation has been subdivided into three stages: proliferation, extracellular matrix development and maturation, and mineralization, with characteristic changes in gene expression at each stage. Few analyses have asked whether CFU-O differentiation, or indeed stem cell differentiation in general, may follow more complex and nondeterministic paths, a possibility that may underlie the substantial number of discrepancies in published reports of progenitor cell developmental sequences. We analyzed 99 single colonies of osteoblast stem/primitive progenitor cells cultured under identical conditions. The colonies were analyzed by global amplification poly(A) polymerase chain reaction to determine which of nine genes had been expressed. We used the expression profiles to develop a statistically rigorous map of the cell fate decisions that occur during osteoprogenitor differentiation and show that different developmental routes can be taken to achieve the same end point phenotype. These routes appear to involve both developmental "dead ends" (leading to the expression of genes not correlated with osteoblast-associated genes or the mature osteoblast phenotype) and developmental flexibility (the existence of multiple gene expression routes to the same developmental end point). Our results provide new insight into the biology of primitive progenitor cell differentiation and introduce a powerful new quantitative method for stem cell lineage analysis that should be applicable to a wide variety of stem cell systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/stemcells.20-3-230 | DOI Listing |
iScience
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.
View Article and Find Full Text PDFiScience
January 2025
Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Department of Dermatology, Changshu No. 1 People's Hospital, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu, 215500, People's Republic of China.
Objective: Rosacea is a common chronic inflammatory disorder primarily affecting the face. While inflammatory factors are known to play a pivotal role in its pathogenesis, their causal relationship with rosacea remains unclear. This study employed a two-sample bidirectional Mendelian randomization (MR) analysis to investigate the causal links between systemic inflammatory regulators and rosacea.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.
Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.
Front Immunol
January 2025
Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.
Introduction: Chronic inflammation is a major risk factor for coronary artery disease (CAD). Currently, the inflammatory cardiovascular risk is assessed via C-reactive protein (CRP) levels measured using a high-sensitivity assay (hsCRP). Monomeric CRP (mCRP) is a locally produced form of CRP that has emerged as a potential biomarker of inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!