Recently, a new, shorter IM nail using two 6 mm reconstruction screws for proximal fixation was introduced in two versions for femoral insertion: piriformis fossa (FAN) and greater trochanter (TAN). These nails were compared experimentally for their fixation stability, proximal load transmission, and failure strength in an unstable intertrochanteric fracture model in cadaveric femurs. Vertical and axial loads were first applied to the intact femurs. Fractures were created, subsequent fixation applied, and the femurs underwent a series of both vertical and axial loading tests. There was no significant difference in strain readings between the nails for either axial loading or cyclical loading. There was no statistically significant difference between the loads to failure for the trochanteric nails and the standard antegrade nails. The average ultimate loadfor the FAN and TAN nails were 3010 N and 2830 N respectively. These two nails performed very similarly throughout our testing.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fixation stability
8
tan nails
8
vertical axial
8
axial loading
8
nails
7
piriformis versus
4
versus trochanteric
4
trochanteric starting
4
starting point
4
fixation
4

Similar Publications

Distal femoral replacement (DFR) with megaprostheses is a salvage revision total knee arthroplasty (rTKA) procedure indicated in cases with massive bone defects in the distal femur. As long as these implants achieve fixation only in the diaphysis, the high aseptic loosening rate reported in some series is probably related to a lack of rotational stability. Two patients with extensive distal femoral bone defects with preservation of the metaphyseal-diaphyseal junction underwent rTKA.

View Article and Find Full Text PDF

Sternal fractures resulting from blunt chest trauma often present unique surgical challenges. While conservative management is common, cases with significant displacement, delayed union, or painful dyspnea may require surgical intervention to improve structural stability and relieve symptoms. Here, we report the case of a 46-year-old man who sustained a displaced sternal fracture in a motor vehicle accident.

View Article and Find Full Text PDF

Objective: Aim: Study the mechanism of interaction between the 'sacroiliac joint - screw' system and determine the optimal parameters of the stabilizing structure, the strength of the system connection through computer modeling, and anatomical-biomechanical experiment.

Patients And Methods: Materials and Methods: The optimal parameters of the stabilizing structure for the sacroiliac joint were calculated using software package MathCAD. To validate the results of the numerical modeling, corresponding investigations of mechanical characteristics and determination of stiffness of the studied systems were conducted by an upgraded testing stand, TIRAtest-2151.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate whether the locking femoral neck plate (LFNP) can be an alternative fixation method to the cannulated screws with a medial buttress plate. For this purpose, we compared biomechanically the LFNP and cannulated screws with or without a medial buttress plate in Pauwels type 3 femoral neck fractures.

Methods: A vertical fracture model was created at an 80-degree angle to the femoral neck in 28 synthetic bone models.

View Article and Find Full Text PDF

Introduction: Sacroiliac joint (SIJ) dislocations, particularly pure SIJ dislocations without associated fractures, represent a rare and complex subset of pelvic ring injuries. Given the intricate pelvic anatomy and the need to achieve both stability and functional recovery, the optimal surgical management for these injuries remains a topic of debate. This systematic review aims to evaluate the various surgical techniques employed in treating this rare and challenging injury and assess associated clinical outcomes and complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!