Diabetic retinopathy remains a leading cause of irreversible blindness. A critical early pathology in the disease is the adhesion of leukocytes to the retinal vasculature, a process that occurs, in part, via intercellular adhesion molecule-1. Once leukocyte adhesion occurs, endothelial cell injury ensues, as does blood-retinal barrier breakdown. Here we show that angiopoietin-1 can prevent and reverse these diabetic retinal vascular changes in both new and established diabetes. Angiopoietin-1, when given intravitreally to newly diabetic rats, normalized retinal vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 mRNA and protein levels, leading to reductions in leukocyte adhesion, endothelial cell injury, and blood-retinal barrier breakdown. When an adenovirus coding for angiopoietin-1 was given systemically to mice with established diabetes, it similarly inhibited leukocyte adhesion and endothelial cell injury and blood-retinal barrier breakdown. These changes coincided with reductions in retinal eNOS, nitric oxide, Akt (protein kinase B), and MAP kinase activity, known mediators of VEGF bioactivity and leukocyte adhesion. When endogenous VEGF bioactivity was inhibited with a soluble Flt-1/Fc chimera, retinal Akt kinase activity was significantly reduced in vivo. Taken together, these data document new vascular and anti-inflammatory bioactivities for angiopoietin-1 and identify it as the first naturally occurring protein that directly protects the retinal vasculature in diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850865 | PMC |
http://dx.doi.org/10.1016/S0002-9440(10)61115-7 | DOI Listing |
Immunol Rev
December 2024
Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Innate immune cells perform vital tasks in detecting, seeking, and eliminating invading pathogens, thus ensuring host survival. However, loss of function of these cells or their overactive response to tissue injury often causes serious ailments. It is, therefore, crucial to understand at a basic level how these cells function in health and disease.
View Article and Find Full Text PDFJ Transl Med
December 2024
Institut de Recherche Biomédicale Des Armées (IRBA), 1, Rue du Lieutenant Raoul Batany, 92141, Clamart, France.
Background: Hemorrhagic shock (HS) corresponds to absolute hypovolemia creating an imbalance between oxygen supply and consumption. This causes an impaired hemostasis, a systemic inflammatory response, and microvascular permeability which can lead to multiple organ failure (MOF). There is no specific treatment for the endothelial dysfunction that plays a major role in the evolution towards MOF.
View Article and Find Full Text PDFJ Neuroinflammation
December 2024
Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
Inflammation is a critical driver of the early stages of diabetic retinopathy (DR) and offers an opportunity for therapeutic intervention before irreversible damage and vision loss associated with later stages of DR ensue. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown mixed efficacy in slowing early DR progression, notably including severe adverse side effects likely due to their nonselective inhibition of all downstream signaling intermediates. In this study, we investigated the role of prostanoids, the downstream signaling lipids whose production is inhibited by NSAIDs, in promoting inflammation relevant to early-stage DR in two human retinal cell types: Müller glia and retinal microvascular endothelial cells.
View Article and Find Full Text PDFEur J Med Res
December 2024
Division of Cardiac Surgery, IWK Children's Heart CentreDivision of Cardiac Surgery, Dalhousie University, Halifax, Canada.
Background: Cardiopulmonary bypass (CPB) causes systemic inflammation during pediatric cardiac surgery, which can contribute to post-operative organ dysfunction and prolonged recovery. This study aims to identify key inflammatory mediators related to this clinically significant immunologic response.
Methods: Pediatric patients were enrolled in a single-arm prospective clinical study (NCT05154864) and received standard cardiac operation, CPB and subzero-balance ultrafiltration.
Biochim Biophys Acta Mol Cell Res
December 2024
Department of Anesthesiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo city, Shimane 693-8501, Japan. Electronic address:
Thrombomodulin is predominantly expressed on vascular endothelial cells and modulates endothelial cell functions by interacting with multiple ligands. The specific thrombomodulin receptor or cofactor active on the endothelial cell surface remains elusive. This study aims to identify interacting partners of thrombomodulin on endothelial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!