Changes in the parasitaemia and the characteristics of parasitic infection for three species of rodent Plasmodium (P. chabaudi chabaudi, P. vinckei petteri and P. yoelii yoelii) were investigated under conditions of stress and after treatment with pentoxifylline (POF), a drug that increases red blood cell deformability and causes peripheral vasodilatation. The results indicated that under stress, late parasite stages became less abundant in the tail blood of mice. These changes might be the consequence of parasite sequestration. Attempts to assess sequestration intensity were made by measuring the release rate (RR) of late stages for 10,000 red blood cells. The RR is given by the product of the parasitaemia (P) by the percentage of old trophozoites (OT) and schizonts (S) in the peripheral blood: RR = P(%OT + %S) . With all three species, RR decreased considerably within 5 min following the manipulation of the mice. Injections of POF had the opposite effect. POF had a protective effect against infection by P.v. petteri, causing a delay of 48 h in the development of infection and a higher survival rate in treated mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00436-001-0538-7 | DOI Listing |
Microbiome
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.
Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.
Nature
January 2025
International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG), .
Mitigating loss of genetic diversity is a major global biodiversity challenge. To meet recent international commitments to maintain genetic diversity within species, we need to understand relationships between threats, conservation management and genetic diversity change. Here we conduct a global analysis of genetic diversity change via meta-analysis of all available temporal measures of genetic diversity from more than three decades of research.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!