Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although evidence exists that nitric oxide (NO) mediates neuroendocrine secretion in mammals, the involvement of NO in the neuroendocrine regulation of non-mammalian vertebrates has yet to be investigated in detail. The present review conveys several recent data, suggesting that NO plays a modulatory role in the caudal neurosecretory system (CNSS) of teleosts. The presence and distribution of neuronal NO synthase (nNOS) was demonstrated in the CNSS of the Nile tilapia Oreochromis niloticus by means of NADPHd histochemistry, NOS immunohistochemistry, NOS immunogold electron microscopy, the citrulline assay for NOS activity and Western blot analysis. NO production by the caudal spinal cord homogenates was also evaluated by the oxyhemoglobin assay. On the whole, these findings indicate that caudal neurosecretory cells express NOS enzymes and presumably produce NO as a cotransmitter. Moreover, the comparison of the nNOS distribution with that of urotensins I and II (UI and UII) suggests that neurosecretory Dahlgren cells belong to two different functional subpopulations: a population of UI/UII secreting nitrergic neurons and a population of non-nitrergic neurons, which principally secrete UII. These results implicate NO as a putative modulator of the release of urotensins from the neurosecretory axon terminals. Therefore, like in mammals, NO appears to influence neuroendocrine secretion in teleosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1096-4959(01)00532-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!