Prolactin is a component of the human synovial liquid and modulates the growth and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

Mol Cell Endocrinol

Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049, Spain.

Published: April 2002

The hormone prolactin (PRL) is the product of a single gene synthesized by pituitary and many extrapituitary tissues. In this study, we have purified and sequenced by mass spectrometry a 29 kDa protein from human synovial liquid, bound to the proteoglycan component of synovial liquid that showed an identical sequence in 20 amino acids to hPRL. We have also found PRL receptor (PRLR) in human knee tissues. The cartilage from osteoarthritic patients shows transcripts of the long PRLR isoform while synovial tissue expresses the intermediate PRLR isoform. Pluripotent mesenchymal stem cells (MSCs) can be isolated from adult bone marrow providing an excellent tool to study MSC-derived differentiation processes. We analyzed the expression of the PRL-PRLR system in hMSCs and during the acquisition of chondrocyte phenotype. We show by RT-PCR that intermediate PRLR isoform is expressed in hMSCs and that PRL exerts a significant increase in cell proliferation. In MSC aggregates cultured in chemically defined medium, we found that extrapituitary PRL transcripts are expressed and the receptor switches isoform expression from the intermediate to long isoform. Furthermore, in cell aggregates, PRL induces type II collagen and extrapituitary PRL expression. Histomorphologic analysis of cell aggregates showed that PRL induces the synthesis of proteoglycans and, in combination with glucocorticoids, a tissue structure with cells organized in longitudinal columns. Under the above conditions, electron microscopic observations show that PRL both downregulates the formation of fibrils of type II collagen and induces cell-cell interactions. All the results presented are consistent with a role of the PRL-PRLR system in bone/cartilage formation/repair processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0303-7207(02)00013-8DOI Listing

Publication Analysis

Top Keywords

synovial liquid
12
prlr isoform
12
human synovial
8
mesenchymal stem
8
stem cells
8
prl
8
intermediate prlr
8
prl-prlr system
8
extrapituitary prl
8
cell aggregates
8

Similar Publications

Metabolic Profiles of Encapsulated Chondrocytes Exposed to Short-Term Simulated Microgravity.

Ann Biomed Eng

December 2024

Department of Mechanical and Industrial Engineering, Montana State University, PO Box 173800, Bozeman, MT, 59717-3800, USA.

The mechanism by which chondrocytes respond to reduced mechanical loading environments and the subsequent risk of developing osteoarthritis remains unclear. This is of particular concern for astronauts. In space the reduced joint loading forces during prolonged microgravity (10 g) exposure could lead to osteoarthritis (OA), compromising quality of life post-spaceflight.

View Article and Find Full Text PDF

Cleavage of Cartilage Oligomeric Matrix Protein (COMP) by ADAMTS4 generates a neoepitope associated with osteoarthritis and other forms of degenerative joint disease.

Matrix Biol

December 2024

Department of Immunology and Inflammation, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom;; Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom;. Electronic address:

Osteoarthritis (OA) is a highly prevalent joint disease, affecting millions of people worldwide and characterized by degradation of articular cartilage, subchondral bone remodeling and low-grade inflammation, leading to pain, stiffness and disability. Cartilage Oligomeric Matrix Protein (COMP) is a major structural component of cartilage and its degradation has been proposed as a marker of OA severity/progression. Several proteases cleave COMP in vitro, however, it is unclear which of these COMPase activities is prevalent in an osteoarthritic joint.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates a link between obesity and rheumatoid arthritis (RA), particularly focusing on how high fat diets (HFD) may impact collagen-induced arthritis (CIA) in rats through gut microbiota and metabolomics.
  • The study involved categorizing rats into four groups—normal, CIA model, HFD, and HFD + CIA—and measuring various factors like arthritis severity, weight, lipid levels, and inflammation.
  • Findings revealed that HFD significantly increased arthritis severity and altered gut microbiota, specifically reducing beneficial bacteria and butyric acid levels, which are associated with inflammation and joint damage in CIA rats.*
View Article and Find Full Text PDF

Mycoplasma synoviae surface-located elongation factor G functions as a cytoadhesin to promote adhesion to synovial sheath cells through binding to vimentin.

Vet Microbiol

November 2024

National Research Center of Veterinary Biologicals Engineering and Technology, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Mycoplasma synoviae infection has caused serious economic losses to the poultry industry worldwide. The molecular mechanism by which M. synoviae colonizes the synovium and induces synovitis is unclear.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a widespread chronic autoimmune disease that primarily causes joint inflammation and damage. In advanced stages, RA can result in joint deformities and loss of function, severely impacting patients' quality of life. The "Tianyu" pair (TYP) is a traditional Chinese medicine formulation developed from clinical experience and has shown some effectiveness in treating RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!