Erythropoietin (EPO) promotes viability, proliferation and differentiation of mammalian erythroid progenitor cells via its specific cell surface receptor (EPO-R). We have previously shown that truncated EPO-Rs containing 267 amino acids or less were defective in internalization of (125)I-EPO, whereas internalization via a receptor derivative containing 276 amino acids was unaffected, thus directing focus to the nine amino acid residues FEGLFTTHK at positions 268-276 [Levin, Cohen, Supino, Yoshimura, Watowich, Neumann, FEBS Lett. 427 (1998) 164-170]. Here, a panel of EPO-R mutants was generated to determine the role of these residues in EPO endocytosis, down regulation of cell surface receptors and EPO-mediated signaling. While linking amino acid residues 268-276 to a truncated EPO-R (Delta+9 EPO-R) conferred both ligand uptake and ligand-independent down regulation of the respective receptor from the cell surface, Phe 272 was crucial for EPO endocytosis but not for ligand-independent down regulation. Additional receptor motifs probably play a role in EPO endocytosis and receptor down-regulation, as these processes were not adversely impaired in Delta268-276 EPO-R. A central role of residues 268-276, in particular Phe, was demonstrated by the inability of Delta268-276 and F268,272A EPO-Rs to support EPO-mediated signal transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(02)02691-1DOI Listing

Publication Analysis

Top Keywords

amino acid
12
acid residues
12
residues 268-276
12
cell surface
12
epo endocytosis
12
amino acids
8
role residues
8
ligand-independent regulation
8
receptor
6
amino
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!