An investigation into the mechanisms mediating plasma lipoprotein-potentiated beta-amyloid fibrillogenesis.

FEBS Lett

Department of Medicine, Royal Free and University College Medical School, Sir Jules Thorn Institute, The Middlesex Hospital, Mortimer Street, W1N 8AA, London, UK.

Published: May 2002

AI Article Synopsis

  • The beta-amyloid peptide's toxicity in Alzheimer's disease is linked to how it polymers, with oxidized plasma lipoproteins significantly increasing this polymerization.
  • The study explored the effects of various treatments, finding that common antioxidants like ascorbic acid and trolox did not prevent Abeta fibrillogenesis, but aminoguanidine showed promise as an antioxidant in inhibiting polymerization.
  • Additionally, the presence of apoprotein components in lipoproteins is crucial for enhancing Abeta polymerization, suggesting their involvement in the interaction with aldehydes.

Article Abstract

The toxicity of the beta-amyloid (Abeta) peptide of Alzheimer's disease may relate to its polymerisation state (i.e. fibril content). We have shown previously that plasma lipoproteins, particularly when oxidised, greatly enhance Abeta polymerisation. In the present study the nature of the interactions between both native and oxidised lipoproteins and Abeta1-40 was investigated employing various chemical treatments. The addition of ascorbic acid or the vitamin E analogue, trolox, to lipoprotein/Abeta coincubations failed to inhibit Abeta fibrillogenesis, as did the treatment of lipoproteins with the aldehyde reductant, sodium borohydride. The putative lipid peroxide-derived aldehyde scavenger, aminoguanidine, however, inhibited Abeta-oxidised lipoprotein-potentiated polymerisation, but in a manner consistent with an antioxidant action for the drug. Lipoprotein treatment with the reactive aldehyde 4-hydroxy-2-trans-nonenal enhanced Abeta polymerisation in a concentration-dependent fashion. Incubation of Abeta with lipoprotein fractions from which the apoprotein components had been removed resulted in extents of polymerisation comparable to those observed with Abeta alone. These data indicate that the apoprotein components of plasma lipoproteins play a key role in promoting Abeta polymerisation, possibly via interactions with aldehydes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(02)02646-7DOI Listing

Publication Analysis

Top Keywords

abeta polymerisation
12
plasma lipoproteins
8
apoprotein components
8
abeta
7
polymerisation
6
investigation mechanisms
4
mechanisms mediating
4
mediating plasma
4
plasma lipoprotein-potentiated
4
lipoprotein-potentiated beta-amyloid
4

Similar Publications

Background: The potential diagnostic value of plasma amyloidogenic beta residue 42/40 ratio (Aβ42/Aβ40 ratio), neurofilament light (NfL), tau phosphorylated at threonine-181 (p-tau181), and threonine-217 (p-tau217) has been extensively discussed in the literature. We have also previously described the association between retinal biomarkers and preclinical Alzheimer's disease (AD). The goal of this study was to evaluate the association, and a multimodal model of, retinal and plasma biomarkers for detection of preclinical AD.

View Article and Find Full Text PDF

The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.

View Article and Find Full Text PDF

Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.

Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.

View Article and Find Full Text PDF

Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity.

View Article and Find Full Text PDF

Cerebrospinal fluid β2-microglobulin promotes the tau pathology through microglia-astrocyte communication in Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.

Background: Cerebrospinal fluid (CSF) β2-microglobulin (β2M) has been demonstrated as an important factor in β-amyloid (Aβ) neurotoxicity and a potential target for Alzheimer's disease (AD). However, more investigation is required to ascertain the relationship between β2M and glial activities in AD pathogenesis.

Methods: In this study, 211 participants from the Alzheimer's disease Neuroimaging Initiative (ADNI) with CSF and Plasma β2M, CSF glial fibrillary acidic protein (GFAP), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), Aβ, phosphorylated-tau (P-tau) and total tau (T-tau) were divided into four groups, stage 0, 1, 2, and suspected non-AD pathology (SNAP) based on the National Institute on Aging- Alzheimer's Association (NIA-AA) criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!