Increased intracellular calcium is required for neurite outgrowth induced by a synthetic peptide ligand of NCAM.

FEBS Lett

Protein Laboratory, Institute of Molecular Pathology, School of Medicine, University of Copenhagen, Panum Institute 6.2., Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.

Published: May 2002

We have recently identified a synthetic peptide, termed C3, capable of binding the first immunoglobulin-like module of neural cell adhesion molecule (NCAM) by means of combinatorial chemistry and shown that this NCAM ligand promotes neurite outgrowth. By means of single cell calcium imaging using the calcium-sensitive probe fura-2-acetomethyl ester, we here show that the C3-peptide induced an increase in intracellular calcium in primary hippocampal neurons and PC12-E2 cells, presumably requiring mobilization of calcium from both extracellular and intracellular stores. We further observed that C3-induced neurite outgrowth was inhibited by antagonists of voltage-dependent calcium channels as well as by an inhibitor of intracellular calcium mobilization, TMB-8. These findings demonstrate at the single cell level that a synthetic NCAM ligand directly can induce an increase in intracellular calcium and suggest that NCAM-dependent neurite outgrowth requires calcium mobilization from both extracellular and intracellular calcium stores. Thus, the C3-peptide may be regarded as a useful tool for the study of NCAM-dependent signal transduction. Furthermore, the peptide may be of considerable therapeutical interest for the treatment of neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(02)02644-3DOI Listing

Publication Analysis

Top Keywords

intracellular calcium
20
neurite outgrowth
16
calcium
9
synthetic peptide
8
ncam ligand
8
single cell
8
increase intracellular
8
extracellular intracellular
8
calcium mobilization
8
intracellular
5

Similar Publications

Widespread occurrence and relevance of phosphate storage in foraminifera.

Nature

January 2025

SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.

Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.

View Article and Find Full Text PDF

Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca) concentrations in root cells.

View Article and Find Full Text PDF

This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes.

View Article and Find Full Text PDF

The TRP Channels Serving as Chemical-to-Electrical Signal Converter.

Physiol Rev

January 2025

Department of Physiology and Membrane Biology, University of California, Davis, School of Medicine, Davis CA, 95616, USA.

Biology uses many signaling mechanisms. Among them, calcium and membrane potential are two prominent mediators for cellular signaling. TRPM4 and TRPM5, two calcium-activated monovalent cation-conducting ion channels, offer a direct linkage between these two signals.

View Article and Find Full Text PDF

As a recently discovered form of regulated cell death, ferroptosis has attracted much attention in the field cancer therapy. However, achieving considerably enhanced efficacy is often restricted by the overexpression of endogenous glutathione (GSH) in tumor microenvironment (TME). In this work, we report a ferroptosis-inducing strategy of GSH depletion and reactive oxygen species (ROS) generation based on a biodegradable copper-doped calcium phosphate (CaP) with L-buthionine sulfoximine (BSO) loading (denoted as BSO@CuCaP-LOD, BCCL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!