Administration of the mitochondrial inhibitors malonate and 3-nitropropionic acid (3-NP) to rats provides useful models of Huntington's disease. Exposure to these inhibitors has been shown to result in increased extracellular concentrations of striatal dopamine (DA), which is neurotoxic at high concentrations. The cause of this increase is unknown. The purpose of this study was to determine whether mitochondrial inhibition alters dopamine transporter (DAT) function. Striatal synaptosomes were incubated in the presence of several structurally unrelated inhibitors of mitochondrial Complexes I, II, and IV, and [(3)H]DA uptake was measured. Although all of the toxins inhibited [(3)H]DA uptake, there was a large variation in their inhibitory potencies, the rank order being rotenone>>cyanide>azide>3-NP>>malonate. Examination of the kinetic parameters of [(3)H]DA uptake revealed that inhibition was due to a reduction in maximum velocity (V(max)), with no change in affinity (K(m)). The addition of either ATP or of ADP plus P(i) to synaptosomes treated with 3-NP, or of the reactive oxygen species spin trap alpha-phenyl-N-tert-butyl nitrone to synaptosomes exposed to either malonate or cyanide failed to prevent mitochondrial toxin-induced inhibition of DAT function. The lack of effect of high energy substrates or of a free radical scavenger suggests that the mechanism by which extracellular DA is increased by several mitochondrial toxins involves factors other than mitochondrial ATP production or oxidative stress. Taken together, the results suggest that one mechanism whereby mitochondrial toxins increase extracellular concentrations of DA is via interaction with the DAT at a site other than the substrate site, i.e. noncompetitive inhibition of the DAT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-2952(02)00910-3 | DOI Listing |
Toxicol Sci
October 2023
Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.
Biomedicines
April 2022
Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
The G2019S mutation in leucine rich-repeat kinase 2 (LRRK2) is a major cause of familial Parkinson's disease. We previously reported that G2019S knock-in mice manifest dopamine transporter dysfunction and phosphoSerine129 α-synuclein (pSer129 α-syn) immunoreactivity elevation at 12 months of age, which might represent pathological events leading to neuronal degeneration. Here, the time-dependence of these changes was monitored in the striatum of 6, 9, 12, 18 and 23-month-old G2019S KI mice and wild-type controls using DA uptake assay, Western analysis and immunohistochemistry.
View Article and Find Full Text PDFJ Biotechnol
December 2021
Naprogenix™, UK-AsTeCC, 145 Graham Avenue, Lexington, KY 40506-0286, USA; College of Medicine, Department of Neurology, University of Kentucky Chandler Medical Center, 740 S. Limestone, Lexington, KY 40536-0298, USA; College of Arts and Sciences, Department of Psychology, University of Kentucky, Kastle Hall, Lexington, KY 40506-0044, USA.
The dopamine transporter (DAT) is targeted in substance use disorders (SUDs), and "non-classical"" DAT inhibitors with low abuse potential are therapeutic candidates. Lobinaline, from Lobelia cardinalis, is an atypical DAT inhibitor lead. Chemical synthesis of lobinaline is challenging; thus, "target-directed evolution" was used for lead optimization.
View Article and Find Full Text PDFPLoS One
July 2017
Cardiological Research Institute, National Scientific and Technical Research Council, Buenos Aires, Argentina.
The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC.
View Article and Find Full Text PDFPhytomedicine
January 2015
Laboratório de Etnofarmacologia, Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Avenida Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil ; Programa de Pós-graduação em Ciências Biológicas: Bioquímica Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Avenida Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil.
Alstonine is the major component of plant based remedies that traditional psychiatrists use in Nigeria. Alstonine is an indole alkaloid that has an antipsychotic experimental profile comparable with that of clozapine and is compatible with the alleged effects in mental patients. Representing a desirable innovation in the pharmacodynamics of antipsychotic medications, the evidence indicates that alstonine does not bind to D2 dopamine receptors (D2R) and differentially regulates dopamine in the cortical and limbic areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!